закрыть рекламу
18+

Диагностика и методы исследования

Глоссарий

А

Б

Г

Д

К

Л

М

О

П

Р

С

Т

У

Ф

Х

Ц

Ч

Э

Я

8
спасибо Спасибо
Оглавление
  1. Что такое ультразвуковое исследование (УЗИ) почек?
  2. Показания и противопоказания к УЗИ почек
  3. Методика проведения УЗИ почек
  4. Подготовка к УЗИ почек - (видео)
  5. УЗИ почек в норме у взрослых и детей. Что показывает УЗИ почек?
  6. Изображение на УЗИ почек при различных заболеваниях. Гидронефроз. Острая и хроническая почечная недостаточность
  7. Диагностика воспалительных заболеваний почек с помощью УЗИ. Гломерулонефрит. Пиелонефрит - (видео)
  8. Аномалии структуры и положения почек на УЗИ. Заболевания почек, сопровождающиеся образованием кист
  9. Мочекаменная болезнь (МКБ). Камни почек на УЗИ - (видео)
  10. УЗИ почек при обменных нарушениях (подагра, сахарный диабет, амилоидоз)
  11. Опухоли почек на УЗИ
  12. Расшифровка результата УЗИ почек. Заключение УЗИ почек
  13. В каких случаях необходимо совместить УЗИ почек с УЗИ других органов?
  14. Где сделать УЗИ почек?

Мочекаменная болезнь встречается почти у 5% населения. Среди заболеваний почек она находится на втором месте после воспалительных заболеваний. Мочекаменная болезнь является многофакторным заболеванием, причем наибольшая составляющая этого заболевания заключается в образе питания и ежедневной активности человека.

Мочекаменная болезнь диагностируется с помощью различных методов, среди которых УЗИ является основным. На УЗИ почек отчетливо видны камни любого размера и химического состава. Стандартные рентгеновские методики исследования почек (экскреторная урография) не являются столь же информативными. Компьютерная и магнитно-резонансная томография дают отличную визуализацию камней и сопутствующих осложнений мочекаменной болезни, однако эти методы не так широкодоступны, как ультразвуковое исследование.
8
спасибо Спасибо
Оглавление
  1. Что такое ультразвуковое исследование (УЗИ) почек?
  2. Показания и противопоказания к УЗИ почек
  3. Методика проведения УЗИ почек
  4. Подготовка к УЗИ почек - (видео)
  5. УЗИ почек в норме у взрослых и детей. Что показывает УЗИ почек?
  6. Изображение на УЗИ почек при различных заболеваниях. Гидронефроз. Острая и хроническая почечная недостаточность
  7. Диагностика воспалительных заболеваний почек с помощью УЗИ. Гломерулонефрит. Пиелонефрит - (видео)
  8. Аномалии структуры и положения почек на УЗИ. Заболевания почек, сопровождающиеся образованием кист
  9. Мочекаменная болезнь (МКБ). Камни почек на УЗИ - (видео)
  10. УЗИ почек при обменных нарушениях (подагра, сахарный диабет, амилоидоз)
  11. Опухоли почек на УЗИ
  12. Расшифровка результата УЗИ почек. Заключение УЗИ почек
  13. В каких случаях необходимо совместить УЗИ почек с УЗИ других органов?
  14. Где сделать УЗИ почек?

Ультразвуковое исследование (УЗИ) – способ медицинской диагностики, основанный на получении изображения органов и тканей путем регистрации ультразвуковых волн, отраженных от биологических тканей и жидкостей. Ультразвуковое исследование также называют эхографией. Изображение на экране создается путем регистрации эха ультразвуковых волн. В настоящее время с помощью УЗИ можно исследовать все органы и ткани человека, получая ценную диагностическую информацию.

Источником ультразвуковых волн является пьезоэлектрический элемент. Открытие пьезоэлектрического эффекта в 1881 году Пьером и Жаком Кюри легло в основу создания ультразвукового метода диагностики. Данный эффект заключается в способности некоторых веществ (кварц, титанат бария) под действием электрического тока становиться источниками ультразвуковых волн. А при воздействии на них ультразвуковых колебаний они начинают вырабатывать электрический ток. Таким образом, ультразвуковой источник является одновременно и датчиком отраженных волн.
24
спасибо Спасибо
Компьютерная томография представляет собой способ изучения внутреннего состояния органов и тканей без проникновения внутрь.
Метод компьютерной томографии
Процедура осуществляется с помощью томографа – прибора, в котором одновременно используются электронные и механические составляющие. Процедура томографии проходит в три стадии:
1. Направленные рентгеновские лучи сканируют поверхность объекта, попадая на особые датчики, передающие полученную картину в прибор.
2. Прибор перерабатывает данные в цифровой формат. Как только компьютер получает данные одного сканирования, тут же выполняется следующее сканирование под другим ракурсом. Длительность сканирования одного слоя 3 секунды.
3. Получив данные со всех датчиков, компьютер анализирует их и выдает графическое изображение исследуемого органа. Врач может увеличить любой фрагмент изображения для более тщательного изучения.
8
спасибо Спасибо
Оглавление
  1. Что такое рентген грудной клетки?
  2. Показания и противопоказания к проведению рентгенографии грудной клетки
  3. Методика проведения рентгена грудной клетки. Подготовка к рентгену грудной клетки
  4. Вред от лучевых методов диагностики. Рентген грудной клетки для детей и беременных
  5. Описание нормального рентгена грудной клетки. Что показывает рентген здоровой грудной клетки (фото)?
  6. Деформации грудной клетки на рентгене
  7. Диагностика заболеваний легких с помощью рентгена грудной клетки
  8. Диагностика заболеваний сердца с помощью рентгена грудной клетки
  9. Доброкачественные и злокачественные опухоли (рак) на рентгене грудной клетки
  10. Где можно сделать рентген грудной клетки?

Рентгенография – метод лучевой диагностики, основанный на использовании рентгеновских лучей для отображения внутренних органов человека. Рентгенография грудной клетки на сегодняшний день является одним из самых распространенных исследований из всех методов лучевой диагностики. Рентген грудной клетки проводится в большинстве медицинских учреждений по причине самых разных заболеваний.

Рентгенография грудной клетки проводится при заболеваниях ребер и позвоночника, а также органов, находящихся в грудной клетке – легких, плевры, сердца. По статистике рентген грудной клетки чаше всего выявляет переломы ребер, пневмонии, сердечную недостаточность. Для людей отдельных профессий (шахтеры, работники химической промышленности) рентгенография грудной клетки является обязательным исследованием и проводится не реже одного раза в год.
6
спасибо Спасибо
Оглавление
  1. Компьютерная томография (КТ) почек – общая характеристика метода и что показывает
  2. Разновидности компьютерной томографии почек
  3. Компьютерная томография (КТ) почек с контрастированием (с контрастом, с контрастным веществом)
  4. Однофотонная эмиссионная компьютерная томография почек
  5. Показания к компьютерной томографии почек
  6. Противопоказания к компьютерной томографии почек
  7. 15 признаков больных почек – видео
  8. КТ и МРТ: показания и противопоказания – видео
  9. Как правильно пройти компьютерную томографию почек – видео
  10. Компьютерная томография (КТ) почек с контрастированием и без контраста – подготовка
  11. Можно ли кушать перед компьютерной томографией почек
  12. Как делается компьютерная томография (КТ) почек
  13. Компьютерная томография (КТ) почек ребенку
  14. Где сделать компьютерную томографию (КТ) почек?
  15. Норма компьютерной томографии почек
  16. Расшифровка компьютерной томографии почек
  17. МРТ или КТ почек – как выбрать, что лучше?
  18. В чем разница между КТ и МРТ – видео
  19. Компьютерная томография (КТ) почек (с контрастированием и без) – цена
  20. Что убивает почки: красное мясо, задержка мочеиспускания, ожирение и неправильная гигиена – видео
  21. Почечная колика: как она развивается и проявляется, как ее успокоить. Профилактика. Как удаляют камни из почек – видео

Компьютерная томография (КТ) почек с контрастированием и без контраста – подготовка


Если ребенку старше 7 лет или взрослому человеку предстоит пройти компьютерную томографию почек без контрастирования, то особой, специальной подготовки к ней не требуется. В обязательном порядке нужно не курить и не кушать в течение 4 – 6 часов до исследования, а пить можно только чистую негазированную воду. В течение 1 – 2 дней до исследования следует исключить физические и психоэмоциональные перегрузки. Если человек страдает заболеваниями пищеварительного тракта, то также в течение двух суток перед исследованием нужно соблюдать диету, которая уменьшает газообразование в кишечнике, чтобы на снимках раздутые кишечные петли не ухудшали четкость изображения почек. Диета заключается в исключении из рациона продуктов и напитков, вызывающих повышенное газообразование в кишечнике, таких, как алкоголь, газированная вода, молоко, молочные продукты, свежие овощи, фрукты, бобовые, пряности, отрубной хлеб, каши из цельного зерна и т.д. Другой подготовки к компьютерной томографии почек без контрастирования не требуется.

Если ребенку или взрослому назначена компьютерная томография почек с контрастированием, то следует отменить прием следующих лекарственных средств:

Кроме того, всем взрослым и детям перед КТ с контрастированием в обязательном порядке за 4 – 5 дней до исследования следует сдать анализ крови на концентрацию креатинина и пробу Реберга для оценки функциональной состоятельности почек. Далее, если у человека нет противопоказаний к КТ почек с контрастированием и результаты анализов на креатинин и пробу Реберга нормальны, то подготовка к исследованию на этом закончена. Но в случаях, когда у человека имеются противопоказания к КТ с контрастированием или результаты анализов не в норме (креатинин повышен более 130 мкмоль/л, а значение пробы Реберга менее 25 мл/мин), то придется перед исследованием пройти дополнительную медикаментозную подготовку, направленную на профилактику осложнений со стороны почек и щитовидной железы.

Медикаментозная подготовка к КТ почек с контрастированием заключается в приеме определенных лекарственных препаратов, дозировки и перечень которых определяется тем, какое именно противопоказание имеется у человека и какие значения имеют анализы на креатинин и пробу Реберга.

Если в прошлом у человека были тяжелые аллергические реакции на йодсодержащие контрастные препараты, то медикаментозная подготовка к КТ почек с контрастированием проводится следующим образом. За 12 часов и за 2 часа до исследования нужно принять глюкокортикоидные гормоны – или Метилпреднизолон в дозе 40 – 50 мг, или Гидрокортизон в дозе 250 мг, или Дексаметазон в дозе 10 мг (любой препарат на выбор). За 2 часа до исследования внутривенно следует ввести 50 мг Ранитидина или 300 мг Циметидина (любой препарат на выбор). Непосредственно перед исследованием внутривенно вводят либо 50 мг Дифенгидрамина, либо 2 мг Клемастина.

Когда у человека имеется заболевание щитовидной железы, тогда медикаментозная подготовка заключается в приеме Тиамазола (одна стандартная доза) и перхлората натрия (три суточные дозы). Прием обоих препаратов начинают за сутки до исследования и продолжают после проведения КТ почек с контрастом еще в течение 28 дней для Тиамазола, и 8 – 14 дней для перхлората натрия.
8
спасибо Спасибо
Миелография - это метод диагностики, позволяющий получить изображение спинного мозга, а точнее, его субарахноидального пространства. Субарахноидальное пространство – это пространство между мягкой и паутинной оболочкой, которое заполнено спинномозговой жидкостью (синоним – ликвором). Именно поэтому миелография также называется ликворографией – поскольку позволяет детально изучить субарахноидальное пространство с циркулирующей в нем жидкостью.

В основе метода лежит принцип рентгенографии, которая проводится после того как в субарахноидальное пространство было введено контрастное вещество. Обладая большей плотностью, чем спинномозговая жидкость, введенное вещество, стекая по паутинному пространству, детальное обрисовывает спинной мозг и само пространство.
7
спасибо Спасибо
Оглавление
  1. Основы рентгеновского метода. Виды рентгена суставов
  2. Рентгенологические и альтернативные методы диагностики патологии суставов, преимущества и недостатки
  3. Показания и противопоказания к проведению рентгена суставов
  4. Подготовка и методика проведения рентгена суставов - (видео)
  5. Рентгеноанатомия суставов. Рентгенологическая картина суставов в норме (тазобедренный, коленный, плечевой и другие)
  6. Диагностика заболеваний суставов с помощью рентгена. Артриты и артрозы
  7. Туберкулез и остеомиелит суставов. Врожденные и приобретенные аномалии суставов
  8. Травматические повреждения суставов на рентгене. Ложные суставы

Рентген суставов и костей является основным методом диагностики нарушений опорно-двигательного аппарата. Недаром одним из первых изображений, полученных рентгеновским методом, был снимок кисти руки человека. Эра рентгена началась в 1895 году, когда Вильгельм Конрад Рентген открыл феномен засвечивания фотопластинки под действием невидимых Х лучей.

Костно-суставный аппарат прекрасно визуализируется при помощи рентгена, а его продвинутые модификации, такие как компьютерная томография, позволяют с высокой точностью диагностировать патологии не только твердых (костей), но и мягких и окружающих тканей суставов (хрящей, связок, сухожилий, мышц, синовиального слоя, суставной капсулы, суставной сумки, сосудов и нервов).
6
спасибо Спасибо
Оглавление
  1. МРТ головного мозга – что показывает, суть, общая характеристика метода
  2. МРТ головного мозга с контрастом
  3. МРТ сосудов и артерий головного мозга – общая характеристика и что показывает
  4. Показания к МРТ головного мозга
  5. Противопоказания к МРТ головного мозга
  6. Подготовка к МРТ головного мозга
  7. Как делают МРТ головного мозга?
  8. Сколько по времени занимает МРТ головного мозга?
  9. МРТ головного мозга: почему она необходима, какие заболевания выявляет, сколько времени занимает исследование, противопоказания (рекомендации врача-рентгенолога) – видео
  10. После МРТ головного мозга
  11. МРТ головного мозга ребенку
  12. КТ (компьютерная томография) или МРТ (магнитно-резонансная томография) головного мозга – чем отличаются методы, что лучше?
  13. Что лучше МРТ головного мозга?
  14. Норма и отражаемые в МРТ головного мозга параметры
  15. Где можно пройти МРТ головного мозга?
  16. Как пройти МРТ головного мозга?
  17. МРТ головного мозга – отзывы
  18. МРТ головного мозга и МРТ сосудов головного мозга – цена
  19. МРТ головного мозга – видео
  20. Диагностика болезни Альцгеймера. Исследования при болезни Альцгеймера: МРТ, КТ, ЭЭГ – видео

Магнитно-резонансная томография (МРТ, ЯМРТ, NMR, MRI) головного мозга представляет собой метод лучевой диагностики различных патологий мозговых структур, основанный на явлении резонанса атомов водорода при воздействии на них магнитными волнами. МРТ позволяет получать послойные объемные изображения различных частей головного мозга, на основании которых можно выявлять разнообразные патологии ЦНС.

МРТ головного мозга – что показывает, суть, общая характеристика метода


Магнитно-резонансная томография головного мозга является современным нетравматичным и неинвазивным (не предполагает введения инструментов в органы) методом диагностики различных патологий ЦНС. Чтобы понимать, что показывает и в каких ситуациях может применяться МРТ, необходимо знать, на чем она основана. Именно поэтому в первую очередь рассмотрим суть магнитно-резонансной томографии.

Итак, МРТ основана на получении послойных объемных изображений в разных плоскостях различных органов. Иными словами, после проведенного исследования врач получает целую серию объемных изображений головного мозга, которые представляют собой как бы срезы в различных плоскостях.

Чтобы наглядно представить себе то, какие именно изображения получит врач в результате проведения МРТ, нужно мысленно вообразить арбуз или кусок колбасы, как умозрительную модель головного мозга в черепной коробке. Далее, если арбуз или колбасу разрезать поперек/повдоль/по диагонали на круги толщиной 3 – 5 мм, то получится довольно много круглых срезов, на которых отлично видна вся внутренняя структура плода (или колбасы). Рассматривая каждый срез, можно оценить состояние арбуза или колбасы в целом, и выявить изъяны в любой точке в самой их толще.

По аналогии с разрезанным на круглые тонкие кусочки арбузом или колбасой, магнитно-резонансная томография позволяет получить серию изображений головного мозга так, будто его тонко нарезали. Причем МРТ позволяет получать изображения в разных плоскостях, то есть так, будто разрезание на тонкие пластинки производилось не только по горизонтали, но и по вертикали, и по диагонали, и вообще по любой воображаемой плоскости. Именно большое количество объемных изображений срезов головного мозга по различным плоскостям и получает врач в результате проведения МРТ. Далее эти изображения анализируются, измеряются размеры, определяется расположение мозговых структур, и на основании всего этого врач делает вывод об отсутствии или наличии патологии головного мозга. Если выявлена какая-либо патология, то врач уточняет ее локализацию и характер повреждений мозговых тканей.

Послойные объемные изображения головного мозга при проведении МРТ возможно получить вследствие того, что данный метод обследования основан на явлении ядерного магнитного резонанса. Ядерный магнитный резонанс (ЯМР) заключается в том, что при воздействии на органы и ткани человека магнитным полем, создаваемым электромагнитом или постоянным магнитом, у атомов водорода ядра поглощают энергию и изменяют свою ориентацию. После прекращения влияния магнитного поля ядра атомов водорода возвращаются в свое обычное состояние с высвобождением энергии, которая поглощается датчиками аппарата МРТ, преобразуется в зрительные образы и выводится на экран в виде изображений изучаемого органа. А поскольку атомы водорода имеются в каждой молекуле органических веществ, из которых состоят органы и ткани тела человека, то можно фиксировать испускаемую ими энергию в момент возвращения ядер в исходное состояние, и получать изображение органа на любой глубине и по любой плоскости.

Вследствие того, что в ходе МРТ изображение получается на основании энергии, испускаемой атомами водорода при их возвращении в исходное состояние после активации магнитным излучением, данный метод позволяет даже без контраста отлично визуализировать мягкие ткани, но вот плотные структуры (кости) на картинках МРТ видны плохо. В силу такого обстоятельства МРТ головного мозга позволяет оценивать состояние органа и выявлять широкий спектр различных патологий. Так, МРТ информативна для диагностики аномалий строения мозга, атрофических процессов, новообразований, сосудистых заболеваний, а также нарушений в ликворопроводящей системе (желудочки и водопроводы мозга). Если говорить более предметно, то при помощи МРТ головного мозга можно выявить следующие патологии:
  • Аномалии головного мозга (аномалия Арнольда-Киари, аномалия Денди-Уолкера, цефалоцеле, агенезия мозолистого тела, гипоплазия мозжечка, кисты средней линии, нарушение дивертикуляции, лиссэнцефалия, шизэнцефалия, полимикрогирия, гетеротопия, фокальная кортикальная дисплазия, нейрофиброматоз, туберозный склероз, тригеминальный ангиоматоз);
  • Врожденные деформации мозгового черепа (краниостеноз, платибазия, базиллярная импрессия);
  • Травматические повреждения головного мозга (ушиб мозга, кровоизлияние в мозг);
  • Цереброваскулярные заболевания (инсульты, лакунарный инфаркт, синдром хронической ишемии мозга, внутримозговые кровоизлияния);
  • Нейродегенеративные заболевания (рассеянный склероз, болезнь Паркинсона, болезнь Альцгеймера, лобно-височная деменция, прогрессирующий надъядерный паралич, амилоидная ангиопатия, спиноцеребральная дегенерация, болезнь Гентингтона, боковой амиотрофический склероз, Валлеровская дегенерация, синдром острой и хронической воспалительной демиелинизации, синдром мультифокально-дегенеративной лейкоэнцефалопатии);
  • Воспалительные заболевания головного мозга (менингиты, энцефалиты, абсцессы мозга и др.);
  • Новообразования головного мозга (опухоли, метастазы, кисты).

Кроме того, что МРТ позволяет выявлять вышеперечисленные заболевания, данный метод также показывает общее состояние структур головного мозга. А на основании состояния структур мозга врач может оценить степень выраженности патологических изменений, определить их характер и, соответственно, сделать вывод о том, насколько тяжело протекает какое-либо заболевание у конкретного человека. Также по результатам МРТ можно оценить, насколько сильно пострадали ткани и структуры головного мозга после ранее перенесенных заболеваний, таких, как менингит, энцефалит, инсульт, гипоксия в родах, хроническая ишемия и т.д. При наличии эпилепсии или неврологической симптоматики (парезы, параличи, расстройства координации движений, речи, глотания и т.д.) МРТ позволяет установить, вследствие повреждения какого участка мозга возникли имеющиеся клинические проявления.

Хотя МРТ головного мозга дает много информации о состоянии мозговых структур, тем не менее, этот метод не является совершенным, и потому не позволяет диагностировать все возможные патологии ЦНС. Например, МРТ не позволяет четко увидеть очаги окаменения в местах бывших кровоизлияний или других повреждений мозга, нарушения в строении костей, свежие кровоизлияния и т.д. Поэтому даже МРТ головного мозга порой нужно дополнять компьютерной томографией, ангиографией или другими видами исследований. В некоторых случаях проблему диагностики можно решить использованием контрастного вещества, и в таких ситуациях производится МРТ с контрастом. В качестве контрастных веществ для проведения МРТ используются соединения гадолиния, которые вводятся внутривенно.

Магнитное поле, в котором находится человек в процессе снятия МРТ, не оказывает вредного воздействия на здоровье. Магнитное излучение в аппарате МРТ сходно с тем, какое дает постоянный электромагнит. Поэтому данный метод обследования достаточно безопасен, вследствие чего может применяться для обследования детей, пожилых людей и больных, находящихся в коме или тяжелом состоянии.
6
спасибо Спасибо
Магнитно-резонансная томография (МРТ, ЯМР) почек представляет собой информативный и безопасный метод диагностики почечной патологии, основанный на применении радиоволн и магнитного поля, при воздействии которых на ткани получаются послойные изображения изучаемого органа.

МРТ почек – общая характеристика и суть метода


Магнитно-резонансная томография почек – это безопасное, высокоинформативное, неинвазивное (не предполагающее введения в физиологические отверстия тела медицинских инструментов) исследование, основанное на воздействии магнитного поля и радиоволн на ткани, и позволяющее с высокой точностью диагностировать почечную патологию и определять степень ее выраженности.

В период появления магнитно-резонансная томография называлась "ядерно-магнитно-резонансная томография (ЯМРТ)" или "ядерно-магнитный резонанс (ЯМР)". Причем слово "ядерный" в названии метода не имело никакого отношения к проникающей радиации, ядерным реакторам, ядерным бомбам и т.д. Слово "ядерный" в терминах отражало лишь то, что в ходе проведения исследования производится воздействие магнитным полем на ядра атомов водорода, а не радиоактивное облучение органов и тканей. Тем не менее, ввиду негативных устойчивых ассоциаций со словом "ядерный", пришлось сменить первоначальное название метода диагностики на современное – магнитно-резонансная томография, которое не несет "опасных" ассоциаций и не отталкивает пациента от обследования.

Магнитно-резонансная томография, как уже было сказано выше, основана на физическом явлении ядерного магнитного резонанса. Данное явление заключается в том, что при воздействии на атомы водорода магнитного поля их ядра поглощают энергию и изменяют ориентацию в пространстве. Затем, когда действие магнитного поля прекращается, атомы водорода возвращаются в свою исходную ориентацию и выделяют ранее поглощенную энергию. Эта высвобождаемая энергия улавливается специальными датчиками, измеряются ее значения, и при помощи компьютерной программы переводятся в изображения почек (и мочевыводящих путей), которые врач видит на мониторе.

Поскольку атомы водорода присутствуют в каждой молекуле биологических веществ, из которых состоит любой орган и ткань, в том числе почки и мочевыводящие пути, эффект ядерного магнитного резонанса позволяет получать изображение исследуемого органа на любой глубине и по любой плоскости. Именно это и происходит в ходе проведения магнитно-резонансной томографии – врач получает на экране целые серии снимков, которые представляют собой как бы разрезы почек на тонкие слои-ломтики по разным плоскостям. Чтобы наглядно представить себе, какие изображения врач получает в результате МРТ, можно в качестве модели почки принять палку колбасы. Далее, чтобы изучить ее внутреннюю структуру, нужно порезать палку на тонкие ломтики, на которых будут видны мельчайшие детали строения. То же самое происходит при МРТ – методика позволяет получить множество снимков, каждый из которых представляет собой как бы срезы, этакие тонкие ломтики почек. И более того, если колбасу можно порезать только по одной плоскости, то МРТ дает изображения почек в разрезе послойно в трех плоскостях (повдоль, поперек и по диагонали).

Соответственно, такие множественные послойные изображения почек по трем плоскостям позволяют детально рассмотреть структуру органа, определить размеры его частей, выявить даже самые мелкие патологические очаги в самой толще тканей. МРТ позволяет диагностировать даже самые маленькие патологические образования, так как толщина получаемых срезов составляет 3 – 5 мм.

Из-за наличия водорода в любой молекуле, составляющей тот или иной орган, МРТ позволяет отлично визуализировать именно мягкие ткани, то есть внутренние органы, сосуды, мышцы, связки, хрящи и т.д. А вот плотные структуры (кости) МРТ визуализирует плохо из-за того, что в них биологические молекулы упакованы очень плотно, и выделяемая их атомами водорода энергия после воздействия магнитного поля как бы накладывается друг на друга, не давая возможности получить четкие изображения. Это означает, что МРТ отлично подходит для диагностики патологий именно мягких органов, в том числе почек.

Так, результаты МРТ дают возможность диагностировать опухоли почек, определять их характер (доброкачественные или злокачественные), размеры, степень распространенности, скорость роста, поражение окружающих тканей, стадию онкологического процесса и т.д. Фактически, что касается диагностики рака почек, МРТ является единственным методом, позволяющим сразу комплексно определить практически все важные параметры опухоли и, в связи с этим, избавляющим от необходимости проводить другие дополнительные исследования (УЗИ, биопсия и т.д.).

Кроме того, МРТ позволяет диагностировать воспалительные процессы в почках и мочевыводящих путях (пиелонефриты, гломерулонефриты, абсцессы, карбункулы и т.д.), паразитарные инфекции, сосудистую патологию (сужение или аневризма почечной артерии, тромбоз почечной вены и т.д.), травматические повреждения, кисты почек, мочекаменную болезнь, аномалии строения почек (удвоение почек, неправильное расположение органа, врожденный поликистоз и т.д.), гидронефроз и т.д. Помимо выявления заболеваний, МРТ дает возможность оценить размеры, расположение, форму, характер патологических очагов и степень тяжести патологии.

Магнитное поле и радиоволны, применяемые для МРТ, не оказывают отрицательного влияния на здоровье и не дают лучевой нагрузки, в отличие от КТ или рентгена. Поэтому само проведение магнитно-резонансной томографии неопасно для человека, вследствие чего такое исследование может производиться и детям, и пожилым людям, и беременным женщинам, но, естественно, исключительно по строгой необходимости.

Определенными преимуществами МРТ перед другими методами обследования почек является отсутствие лучевой нагрузки, возможность получения снимка-среза на любом уровне и по любой плоскости, а также отсутствие артефактов от костей, закрывающих собой многие важные структуры. К недостаткам МРТ почек относят необходимость неподвижно лежать во время исследования, относительную длительность обследования, высокую стоимость и невозможность использования при наличии у человека кардиостимуляторов или ферромагнитных имплантов.

Так как МРТ почек позволяет получить очень качественные и точные снимки органа, то перед прохождением обследования желательно посетить уролога или нефролога, который сможет сформулировать для радиолога конкретные вопросы о состоянии органа.
7
спасибо Спасибо
Оглавление
  1. Рентгеновский метод диагностики. Виды рентгеновского исследования костей
  2. Показания и противопоказания рентгена костей скелета
  3. Подготовка к рентгену костей
  4. Методики рентгеновского исследования костей
  5. Что видно на рентгене костей скелета в норме? Как выглядят на рентгене отдельные кости? - (видео)
  6. Заболевания костей, диагностируемые с помощью рентгена. Периостит. Остеомиелит
  7. Травматические повреждения костей. Диагностика переломов с помощью рентгена
  8. Диагностика опухолей и опухолеподобных заболеваний костей с помощью рентгена. Где можно сделать рентген костей?

Рентген костей позволяет изучить их форму, размеры и внутреннее строение. Анатомические особенности строения костей влияют на способы их исследования, а также на то, как они выглядят на снимке. Кости человека могут быть сгруппированы в несколько категорий согласно их внутренней структуре. Благодаря тому, что в скелете человека большое количество костей, для многих из них были придуманы особые рентгеновские укладки.

Знание того, как выглядят кости на рентгене в норме, помогает врачам установить диагноз заболевания костей по отличиям на рентгеновском снимке. В норме любые кости должны оставлять на рентгеновском снимке тень равномерной плотности с четкими ровными границами. Некоторые кости могут выглядеть несколько иначе из-за наличия воздухоносных полостей или наложения теней других костей.
6
спасибо Спасибо
Оглавление
  1. Что за процедура спирометрия? Краткая характеристика
  2. Цель спирометрии
  3. ФВД спирометрия
  4. Спирометрия и спирография
  5. Показания к спирометрии
  6. Противопоказания к спирометрии
  7. Показатели (данные) спирометрии
  8. Подготовка к спирометрии
  9. Как проводится спирометрия (методика исследования)
  10. Спирометрия: функция внешнего дыхания (ЖЕЛ, ФЖЕЛ, МВЛ) – видео
  11. Норма спирометрии
  12. Расшифровка (оценка) спирометрии
  13. Спирометрия у детей
  14. Спирометрия с пробой
  15. Спирометрия при астме, ХОБЛ и фиброзе
  16. Пикфлоуметрия и спирометрия
  17. Где сделать спирометрию?
  18. Цена спирометрии
  19. Диагностика бронхиальной астмы: симптомы и признаки, спирография и спирометрия, рентген и др. (комментарии врача) – видео
  20. Три дыхательных теста: тест на алкогольное опьянение, спирометрия (пикфлоуметрия), уреазный тест – видео
  21. Дыхательная система человека – видео
  22. Механизм дыхания и жизненная емкость легких – видео

Спирометрия представляет собой метод измерения легочных объемов и потоков (скорости движения) воздуха на фоне спокойного дыхания и выполнения дыхательных маневров. Иными словами, в ходе проведения спирометрии регистрируется, какие объемы воздуха и с какой скоростью попадают в легкие при вдохе, выводятся при выдыхании, остаются после вдоха и выдоха и т.д. Измерение легочных объемов и скорости движения воздуха во время спирометрии позволяет оценить функцию внешнего дыхания.

Что за процедура спирометрия? Краткая характеристика


Итак, спирометрия представляет собой метод функциональной диагностики, предназначенный для оценки функции внешнего дыхания за счет измерения объемов и скорости движения воздуха во время совершения дыхательных движений в покое и при напряжении. То есть во время спирометрии человек выполняет обычные, спокойные вдохи и выдохи, вдохи и выдохи с силой, вдохи и выдохи после того, как основной вдох или выдох уже был сделан, и во время выполнения таких дыхательных маневров специальный прибор (спирометр) регистрирует объем и скорость потока воздуха, попадающего в легкие и выдыхаемого из них. Последующая оценка таких дыхательных объемов и скоростей потока воздуха позволяет оценить состояние и функцию внешнего дыхания.

Функция же внешнего дыхания состоит в вентиляции легких воздухом и осуществлении газообмена, когда в крови снижается содержание углекислого газа и повышается – кислорода. Комплекс органов, обеспечивающих функцию внешнего дыхания, называется системной внешнего дыхания, и состоит из легких, малого круга кровообращения, грудной клетки, дыхательной мускулатуры (межреберные мышцы, диафрагма и т.д.) и дыхательного центра в головном мозге. Если развиваются нарушения работы любого органа системы внешнего дыхания, то это может приводить к дыхательной недостаточности. Спирометрия же позволяет комплексно оценить, насколько нормальна функция внешнего дыхания, осуществляемая системой внешнего дыхания, и как она соответствует потребностям организма.

Исследование функции внешнего дыхания в ходе спирометрии может применяться при широчайшем спектре показаний, так как его результаты позволяют на ранних этапах выявлять патологию бронхолегочной системы, нервно-мышечные заболевания, оценивать динамику развития патологии, эффективность терапии, а также состояние пациента в процессе реабилитации, медицинской экспертизы (например, военных, спортсменов, работающих с вредными веществами и т.д.). Кроме того, оценка функции внешнего дыхания необходима для подбора оптимального режима искусственной вентиляции легких (ИВЛ), а также решения вопроса о том, какой вид наркоза можно давать пациенту на предстоящей операции.

Различные заболевания, протекающие с нарушением функции внешнего дыхания (ХОБЛ, астма, эмфизема, обструктивный бронхит и т.д.), проявляются сходными симптомами, такими, как одышка, кашель и т.д. Однако причины и механизм развития этих симптомов могут кардинально отличаться. А ведь именно знание верных причин и механизмов развития заболевания позволяет врачу назначить максимально эффективное лечение в каждом конкретном случае. Спирометрия, дающая возможность оценить функцию внешнего дыхания и характер имеющихся в ней нарушений, дает возможность установить именно тип недостаточности внешнего дыхания и механизм его развития. Так, в настоящее время, в зависимости от ведущего механизма повреждения, выделяют следующие типы нарушений дыхательной функции:
  • Обструктивный тип, обусловленный нарушением прохождения струи воздуха по бронхам (например, при спазме, отеке или воспалительной инфильтрации бронхов, при большом количестве вязкой мокроты в бронхах, при деформации бронхов, при коллапсе бронхов на выдохе);
  • Рестриктивный тип, обусловленный уменьшением площади альвеол легких или низкой растяжимостью легочной ткани (например, на фоне пневмосклероза, удалении части легкого в ходе операции, ателектазе, заболеваниях плевры, ненормальной форме грудной клетки, нарушении работы дыхательной мускулатуры, сердечной недостаточности и т.д.);
  • Смешанный тип, когда имеется комбинация и обструктивных, и рестриктивных изменений в тканях дыхательных органов.

Спирометрия позволяет выявлять и обструктивные, и рестриктивные типы нарушения дыхания, а также отличать одни от других, и, соответственно, назначать наиболее эффективное лечение, делать правильные прогнозы по течению патологии и т.д.

В заключении спирометрии указывается наличие, степень выраженности и динамика обструктивного и рестриктивного типов нарушений функции внешнего дыхания. Однако одного заключения спирометрии недостаточно для постановки диагноза. Ведь итоговые результаты спирометрии анализируются лечащим врачом в сочетании с симптоматикой, данными других обследований, и только на основании этих совокупных данных выставляется диагноз и назначается лечение. Если данные спирометрии не совпадают с симптомами и результатами других исследований, то назначается углубленное обследование пациента с целью уточнения диагноза и характера имеющихся нарушений.

Цель спирометрии


Спирометрия проводится с целью ранней диагностики нарушений дыхательной функции, уточнения заболевания, протекающего с расстройством дыхания, а также для оценки эффективности проводимой терапии и реабилитационных мероприятий. Кроме того, спирометрия может применяться для прогноза дальнейшего течения заболевания, выбора метода наркоза и ИВЛ (искусственной вентиляции легких), оценки трудоспособности, контроля за состоянием здоровья людей, работающих с вредными веществами на производстве. То есть основная цель спирометрии – это оценки состоятельности работы органов, обеспечивающих нормальное дыхание.

ФВД спирометрия


Термин "ФВД спирометрия" не совсем верный, так как аббревиатура "ФВД" расшифровывается, как функция внешнего дыхания. А функция внешнего дыхания – это то, что оценивается при помощи метода спирометрии.
7
спасибо Спасибо
Оглавление
  1. Что такое рентген шейного отдела позвоночника? Виды рентгенологического исследования шейного отдела позвоночника
  2. Показания и противопоказания к рентгену шейного отдела позвоночника
  3. Методика проведения и подготовка к рентгену шейного отдела позвоночника
  4. Что показывает рентген шейного отдела позвоночника в норме?
  5. Дистрофические заболевания шейного отдела позвоночника. Остеохондроз, грыжи межпозвоночных дисков на рентгеновском снимке
  6. Диагностика травм и аномалий шейного отдела позвоночника с помощью рентгеновских методов
  7. Диагностика опухолей и воспалительных заболеваний позвоночника с помощью рентгена
  8. Где сделать рентген шейного отдела позвоночника?

Рентгенологическое исследование шейного отдела позвоночника является востребованным методом диагностики в современной медицине. 80% населения земного шара в большей или меньшей степени страдает от боли в шее. Раньше этому недугу в большей степени были подвержены люди старшего поколения ввиду естественного старения организма, воспалительных заболеваний и травм. В настоящее время заболевания шейного отдела позвоночника все чаще атакуют молодежь. Главной причиной такой печальной статистики является малоподвижный образ жизни, который ведет современное человечество. Несмотря на развитие медицинских технологий, рентгеновские методы остаются первыми и эффективными способами выявления заболеваний позвоночника благодаря своей доступности, информативности и простоте проведения.
5
спасибо Спасибо
Оглавление
  1. Общие сведения об осмотре глазного дна
  2. Виды осмотра глазного дна
  3. Как и когда делают осмотр глазного дна?
  4. Результаты осмотра глазного дна
  5. Что дает осмотр глазного дна у детей и беременных женщин?
  6. Стоимость и адреса проведения офтальмоскопии
  7. Осмотр глазного дна, лазерная терапия и хирургия глаза при диабете, патологиях сетчатки и зрительного нерва – видео
  8. Осмотр глазного дна: для чего проводится исследование – видео
  9. Сахарный диабет и зрение. Строение сетчатки. Диабетическая ретинопатия: симптомы (комментарии врача-офтальмолога) – видео
  10. Гониоскопия, HRT при глаукоме. Дифференциальная диагностика: глаукома, катаракта, иридоциклит – видео
  11. Ранняя диагностика глаукомы: механическая и компьютерная периметрия, тонометрия (комментарии врача-офтальмолога) – видео
  12. Диагностика диабетической ретинопатии: ангиография, офтальмоскопия, томография, УЗИ – видео
  13. Диагностика астигматизма: обследования, тесты. Дифференциальная диагностика астигматизма – видео
  14. Три анализа при ухудшении зрения – видео

Осмотр глазного дна представляет собой диагностическую манипуляцию в практике врачей-офтальмологов, которая проводится при помощи особых инструментов и предназначается для оценки состояния сетчатки, диска зрительного нерва и сосудов глазного дна. Благодаря осмотру глазного дна врач может выявлять различные патологии глубоко лежащих структур глаза на ранних стадиях их появления и развития.

Общие сведения об осмотре глазного дна


Как называется осмотр глазного дна?


Процедура осмотра глазного дна называется офтальмоскопия. Данный термин образован от двух греческих слов – ophtalmos и skopeo, которые в переводе означают соответственно "глаз" и "смотреть". Таким образом, подстрочный перевод термина офтальмоскопия с греческого означает "смотреть глаз".

Однако же под термином "офтальмоскопия" подразумевается осмотр глазного дна в принципе. То есть именно изучение состояния глазного дна с целью выявления патологических изменений в глубоких структурах глаза. Такой осмотр может проводиться при помощи различных инструментов и, соответственно, в зависимости от используемых приборов, называться по-разному. Так, собственно офтальмоскопией называется осмотр глазного дна при помощи офтальмоскопов. Осмотр глазного дна при помощи щелевой лампы и набора линз (линзы Гольдмана, фундус-линзы и проч.) называется биомикроскопией. То есть и офтальмоскопия, и биомикроскопия – это способы осмотра глазного дна, которые проводятся различными медицинскими инструментами, но предназначаются для одних и тех же целей.

Ниже мы рассмотрим все виды осмотра глазного дна по отдельности, так как между ними имеются различия в диагностической информативности, способах проведения и т.д.

Какой врач проводит осмотр глазного дна (окулист, офтальмолог)?


Осмотр глазного дна проводится врачом, специализирующемся на диагностике и лечении различных заболеваний глаз. Врач такой специальности называется офтальмологом или окулистом (записаться). Оба понятия, и офтальмолог, и окулист – совершенно правильные и равнозначные. Просто термин "офтальмолог" представляет собой название специалиста по-гречески, а "окулист" – на латыни.

Что такое глазное дно?


Чтобы понимать, что представляет собой глазное дно, необходимо в общих чертах знать строение глаза. Глаз представляет собой сложно устроенный орган, схематичное строение которого изображено на рисунке 1.

7
спасибо Спасибо
Урофлоуметрия – медицинское исследование процесса мочеиспускания и его параметров. Суть исследования заключается в том, что процесс мочеиспускания пациента регистрируется специальными датчиками и обрабатывается компьютерными программами. При этом исследуется целый ряд параметров (скорость мочеиспускания, объем мочи за единицу времени и так далее), которые позволяют выявить и диагностировать некоторые заболевания мочеполовой системы у мужчин и у женщин.

Чтобы понять принцип действия и значение урофлоуметрии при диагностике различных заболеваний, необходимы общие представления о функционировании мочевого пузыря и мочевыводящих путей (уретры).

В нормальных условиях образующаяся в почках моча поступает в мочевой пузырь и накапливается в нем. Стенка мочевого пузыря включает мышечный слой (так называемый детрузор), который участвует в процессе мочеиспускания. При поступлении мочи в мочевой пузырь детрузор расслабляется, растягивается, в результате чего объем пузыря увеличивается. Одновременно с этим сокращаются мышцы шейки мочевого пузыря, тазового дна и уретры (мочеиспускательного канала), что также препятствует выходу мочи из мочевого пузыря.
7
спасибо Спасибо
Оглавление
  1. Основы рентгеновского исследования желудка и пищевода
  2. Показания и противопоказания к рентгену желудка и пищевода
  3. Процедура проведения рентгена желудка и пищевода
  4. Подготовка к рентгену желудка и пищевода
  5. Анатомические особенности пищевода. Изображение пищевода на рентгене
  6. Рентгенологическое исследование желудка. Анатомия и лучевое изображение здорового желудка
  7. Диагностика заболеваний пищевода с помощью рентгена - (видео)
  8. Аномалии пищевода на рентгене
  9. Аномалии желудка на рентгене. Рентгенодиагностика функциональных нарушений желудка
  10. Диагностика острого и хронического гастрита с помощью рентгена - (видео)
  11. Диагностика язвенной болезни и опухолевых образований желудка с помощью рентгена
  12. Где сделать рентген желудка и пищевода?

Рентгеновское исследование пищевода основывается на анатомических данных этого органа. Его расположение в грудной клетке в окружении мягких тканей диктует необходимость применения контрастного вещества для его визуализации. Пищевод на рентгене выглядит в виде белой полосы контрастного вещества, так как объемная полая трубка представлена на рентгеновском снимке в плоскости.

Для выявления патологических изменений пищевода врачам необходимо знать, как он должен выглядеть на рентгене в норме. Например, в пищеводе имеются физиологические участки сужения и расширения, которые опытный врач умеет отличить от патологических изменений, которые свидетельствуют о заболеваниях. Рентгеноанатомическое деление органа на сегменты помогает в описании точного уровня, на котором находится инородное тело, опухоль или язвенный дефект пищевода.
5
спасибо Спасибо
Оглавление
  1. Общая характеристика метода УЗИ
  2. Как и когда производят УЗИ желудка и пищевода?
  3. Картина УЗИ желудка и пищевода
  4. Патология желудка и пищевода на УЗИ
  5. Где делают УЗИ желудка и пищевода? Стоимость исследования
  6. УЗИ и гастроскопия в диагностике рака желудка – видео
  7. Упражнения при грыже пищевода – видео
  8. 9 вещей, которые категорически нельзя делать на голодный желудок – видео
  9. Народная медицина при ГЭРБ (гастроэзофагеальной рефлюксной болезни) – видео
  10. Диагностика ГЭРБ (гастроэзофагеальной рефлюксной болезни) – видео
  11. Самостоятельная диагностика гастрита и язвы – видео
  12. Пищевод Барретта, как осложнение ГЭРБ и предвестник рака – видео

Картина УЗИ желудка и пищевода


Чтобы хорошо ориентироваться в результатах УЗИ желудка и пищевода, необходимо, в первую очередь, знать анатомию этих органов, которую мы в краткой форме приведем ниже.

Анатомия желудка и пищевода


Пищевод представляет собой полую трубку, продолжающуюся от глотки до желудка. Пищевод условно делится на три части – верхнюю, среднюю и нижнюю трети, причем границами каждой части являются физиологические сужения органа. Так, верхняя треть пищевода начинается от глотки и продолжается до уровня второго физиологического сужения, которое лежит на уровне разделения трахеи на правый и левый главный бронх. Средняя треть пищевода (грудная часть) продолжается от второго физиологического сужения до уровня диафрагмы. Наконец, нижняя треть пищевода (брюшная часть) протягивается от уровня диафрагмы и до его соединения с желудком.

Желудок располагается в верхней часть брюшной полости между пищеводом и двенадцатиперстной кишкой (см. рисунок 1). Область соединения желудка с пищеводом называется кардиальной частью (или просто кардией), верхняя часть – дном желудка. Ниже дна расположено тело желудка, которое переходит в пилорическую (привратниковую) часть. Пилорическая часть, в свою очередь, состоит из привратниковой пещеры (синуса) и канала привратника. Кардия, дно и тело желудка образуют пищеварительный мешок, а пещера и канал привратника – эвакуаторный канал.


Рисунок 1 – Строение желудка.

В самом желудке выделяют переднюю и заднюю стенки. Передняя стенка желудка контактирует с диафрагмой, передней брюшной стенкой и нижней частью печени. Задняя стенка желудка прилежит к аорте, поджелудочной железе, селезенке, верхнему полюсу левой почки и левому надпочечнику, частично к диафрагме и поперечной ободочной кишке. На передней стенке желудка расположена малая кривизна, а на задней – большая кривизна. Форма желудка бывает различной в зависимости от возраста, пола, его расположения, наполнения, функционального состояния. Однако в норме желудок чаще всего имеет форму либо рога, либо крючка.

Размеры желудка также варьируют – его длина в норме составляет 20 – 25 см, ширина – 12 – 14 см, длина малой кривизны – 18 – 19 см, длина большой кривизны – 45 – 56 см, толщина стенки – 2 – 5 см, а емкость – 1,5 – 3 литра.
5
спасибо Спасибо
Оглавление
  1. Общая характеристика метода УЗИ
  2. Как и когда производят УЗИ желудка и пищевода?
  3. Картина УЗИ желудка и пищевода
  4. Патология желудка и пищевода на УЗИ
  5. Где делают УЗИ желудка и пищевода? Стоимость исследования
  6. УЗИ и гастроскопия в диагностике рака желудка – видео
  7. Упражнения при грыже пищевода – видео
  8. 9 вещей, которые категорически нельзя делать на голодный желудок – видео
  9. Народная медицина при ГЭРБ (гастроэзофагеальной рефлюксной болезни) – видео
  10. Диагностика ГЭРБ (гастроэзофагеальной рефлюксной болезни) – видео
  11. Самостоятельная диагностика гастрита и язвы – видео
  12. Пищевод Барретта, как осложнение ГЭРБ и предвестник рака – видео

УЗИ (ультразвуковое исследование) желудка и пищевода является инструментальным методом обследования, позволяющим оценивать состояние тканей и производить неинвазивную (не предполагающую введение инструментов в полости тела) диагностику различных заболеваний этих органов пищеварительной системы.

Метод УЗИ основан на получении изображения внутренних органов и тканей при отражении от них звуковых волн высокой частоты (ультразвуковых волн). Для понимания диагностических возможностей УЗИ, а также принципов и порядка его проведения, следует знать физические основы метода, которые будут рассмотрены в первую очередь.

Общая характеристика метода УЗИ


Описываемый метод инструментальной диагностики в настоящее время наиболее часто называется простой аббревиатурой УЗИ, которая расшифровывается как "ультразвуковое исследование". Помимо этого широко распространенного названия, имеются еще несколько наименований метода УЗИ, такие, как "сонография", "ультрасонография" или "эхосонография". Все четыре указанные названия применяются для обозначения одного и того же метода диагностики, поэтому, по сути, являются синонимами. Однако в настоящее время, как правило, в среде и врачей, и пациентов используется название УЗИ, а другие наименования метода применяют гораздо реже. Тем не менее, нужно знать все возможные названия одного и того же метода диагностики, чтобы уверенно ориентироваться в терминологии.

В ходе производства УЗИ врач видит на мониторе изображение внутренних органов, которые оказались на пути звуковых волн высокой частоты. Благодаря поворотам и различным движениям датчика врач может видеть орган на различной глубине, с разных сторон и точек зрения. Вследствие такой возможности рассмотрения изучаемого анатомического объекта с разных точек зрения специалист по УЗ-диагностике может оценить структуру, форму, расположение, размеры, наличие патологических очагов и другие параметры, на основании которых делается вывод о характере имеющегося заболевания. Чтобы четко представлять себе, что видит врач на УЗИ, рассмотрим физические основы этого метода и его основные характеристики.

Физические основы УЗИ


Метод ультразвукового исследования внутренних органов и тканей основан на способности звуковых волн высокой частоты проникать в биологические структуры тела, частично отражаться от них и выходить обратно наружу с поверхности тела. То есть звуковые волны проникают в ткани внутренних органов, где частично ими поглощаются, частично рассеиваются и частично отражаются, вследствие чего определенное количество посланных волн выходит из тела обратно. Специальные датчики посылают и улавливают отразившиеся от тканей звуковые волны, которые на входе в тело имеют одни физические параметры, а на выходе – другие. Далее на разнице физических параметров вошедших и вышедших из тела звуковых волн компьютерная программа выстраивает изображение исследуемого органа на мониторе, которое и видит врач. Таким образом, очевидно, что в основе УЗИ лежит принцип эхо, когда регистрируются отраженные от биологических тканей звуковые волны.
5
спасибо Спасибо
Оглавление
  1. Общие сведения о допплерометрии
  2. Допплерометрия в различных отраслях медицины
  3. Допплерометрия при беременности (допплерометрия в акушерстве, допплерометрия плода, допплерометрия пуповины, допплерометрия венозного протока)
  4. Где сделать допплерометрию? Сколько стоит исследование?
  5. Какие продукты очищают сосуды – видео
  6. Способы очистки сосудов – видео
  7. Укрепляем сердце и чистим сосуды дома: незаменимые продукты и напитки – видео
  8. Как очистить сосуды – видео
  9. Аневризма артерии головного мозга - видео
  10. Допплерометрия в 3 триместре. УЗИ Доплера при беременности, расшифровка результатов – видео
  11. Рассчитать, какой срок беременности в неделях, и вычислить дату родов по последней менструации – видео
  12. Курение во время беременности на разных сроках: влияние на плод. Отказ от курения при беременности – видео

Допплерометрия при беременности (допплерометрия в акушерстве, допплерометрия плода, допплерометрия пуповины, допплерометрия венозного протока)


Допплерометрия в акушерской практике, которая проводится беременным женщинам для диагностики патологии плода, обусловленной сосудистыми нарушениями, в обиходе называется по-разному. Так, в настоящее время для обозначения такой допплерометрии при беременности используют термины "допплерометрия плода", "допплерометрия пуповины", "допплерометрия венозного протока". Все эти термины обозначают одно и то же исследование – допплерометрию маточно-плацентарного и фетоплацентарного кровотока при беременности для выявления патологии плода.

Общие сведения о допплерометрии маточно-плацентарного кровотока


Допплерометрия в акушерской практике проводится беременным женщинам с целью изучения маточно-плацентарного и фетоплацентарного кровотока, которые обеспечивают кровоснабжение плода. Если имеются нарушения в маточно-плацентарном или фетоплацентарном кровотоке, то плод страдает от дефицита кровоснабжения, что провоцирует задержку его развития, внутриутробную гипоксию, осложнения в родах и т.д.

Кровоснабжение плода осуществляется в рамках физиологической системы мать-плацента-плод, которая, в свою очередь, состоит из двух основных компонентов – маточно-плацентарного и фетоплацентарного кровотоков. Маточно-плацентарный кровоток представлен маточными артериями, которые приносят кровь к плаценте. А фетоплацентарный кровоток представлен сосудами плаценты, из которых кровь через пуповину поступает непосредственно к плоду. То есть между организмами матери и плода стоит плацента, через которую кровь, обогащенная кислородом и питательными веществами, поступает к плоду, и уходит обратно в кровоток матери, насыщенная углекислым газом и продуктами обмена веществ. Далее уже из организма матери эти вещества выделяются наружу ее органами – почками, печенью, легкими.

Допплерометрия позволяет оценивать параметры кровотока в сосудах матки, плаценты и у плода, которые формируют маточно-плацентарный и фетоплацентарный кровотоки, и на основании этого выявлять различные расстройства кровообращения в системе мать-плацента-плод. Благодаря допплерометрии в акушерской практике выявляются различные расстройства кровообращения у плода (например, пороки сердца, гипоксия и проч.), фетоплацентарная недостаточность и осложнения беременности. Регистрация параметров кровотока в сосудах у плода, в плаценте и маточных артериях направлена, главным образом, на выявление плацентарной недостаточности и обусловленной ею задержки развития плода.
5
спасибо Спасибо
Оглавление
  1. Общие сведения о дуоденальном зондировании
  2. Как делают дуоденальное зондирование?
  3. Результаты дуоденального зондирования
  4. Проведение дуоденального зондирования
  5. Причины холецистита: возраст, пол, лямблиоз, дискинезия желчевыводящих путей, наследственность – видео
  6. Диагностика холецистита: анализы мочи и крови, копрограмма, дуоденальное зондирование – видео
  7. Желчнокаменная болезнь: причины, лечение без операции, растворение камней, осложнения – видео
  8. О чем Вам расскажет горечь во рту, причины, как от нее избавиться – видео

Дуоденальное зондирование представляет собой инструментальный метод обследования, применяющийся с целью диагностики заболеваний и оценки состояния желчевыделительной системы, основанный на анализе отобранных порций желчи из двенадцатиперстной кишки, куда она поступает из желчевыводящих путей. Отобранная желчь подвергается цитологическому, биохимическому, бактериологическому анализам, на основании которых удается выявить нарушения желчеобразования, желчевыделения и моторики желчевыделительной системы (например, тип дискинезии желчного пузыря, холестаз и т.д.). Кроме того, дуоденальное зондирование применяется не только в диагностических целях, но и для отсасывания желчи при застойных явлениях в желчевыводящей системе.

Общие сведения о дуоденальном зондировании


Названия метода дуоденального зондирования


Сегодня имеется две основные разновидности дуоденального зондирования – это классическое трехфазное и фракционное. Для обозначения трехфазного классического варианта обычно не применяют каких-либо иных названий.

А вот метод фракционного дуоденального зондирования в настоящее время в научной литературе и официальной медицинской документации полно может называться "фракционное дуоденальное зондирование", "порционное дуоденальное зондирование", "этапное дуоденальное зондирование", "многомоментное дуоденальное зондирование". Все эти названия применяются для обозначения одного и того же метода обследования – фракционного дуоденального зондирования.

Следует знать, что принципиальных различий между двумя разновидностями дуоденального зондирования (фракционным и трехфазным) нет, так как они выполняются с точки зрения пациента одинаково. Просто во фракционном зондировании этап, который в классическом трехфазном зондировании был единым, разделили на три этапа, получив в результате не трехфазный, а пятифазный метод.

Дуоденальное зондирование желчного пузыря и дуоденальное зондирование желчи


Названия "дуоденальное зондирование желчного пузыря" и "дуоденальное зондирование желчи" являются неправильными наименованиями обычного дуоденального зондирования. В данных неправильных названиях введено уточнение о том, что зондирование касается желчного пузыря или желчи, что некорректно, так как в ходе процедуры из двенадцатиперстной кишки отбирается желчь трех порций – из общего желчного протока, из желчного пузыря и из печеночных протоков. После забора все три порции желчи отправляются на анализ. Соответственно, дуоденальное зондирование предполагает забор разных порций желчи, в том числе и из желчного пузыря, поэтому вышеописанные некорректные уточнения совершенно излишни.

Таким образом, очевидно, что под терминами "дуоденальное зондирование желчного пузыря" и "дуоденальное зондирование желчи" нужно понимать обычное дуоденальное зондирование.

Что такое дуоденальное зондирование?


Дуоденальное зондирование представляет собой извлечение желчи из двенадцатиперстной кишки при помощи специального зонда, проведенного в этот орган. А в двенадцатиперстную кишку, в свою очередь, желчь поступает из желчного протока, желчного пузыря и внутрипеченочных протоков. Таким образом, через двенадцатиперстную кишку врачам удается извлечь желчь из трех органов желчевыделительной системы – желчного протока, желчного пузыря и печени. Далее отобранная желчь анализируется в лаборатории – определяется ее состав, наличие паразитов, объем и т.д. На основании данных лабораторного исследования полученной в ходе зондирования желчи врач может оценивать состояние и активность желчевыделительных путей, а также выявлять различные нарушения желчеобразования, желчевыделения и моторики "желчных" органов.

Что показывает и зачем делают дуоденальное зондирование?


Исследование желчи, полученной в ходе зондирования, дает возможность получить высокоточную информацию при заболеваниях желчного пузыря и желчных ходов, а также судить о характере работы желчных протоков печени, о наличии воспалительного процесса и микробов в желчных путях. Зондирование, кроме того, позволяет оценивать концентрационную и сократительную функцию желчного пузыря, то есть понимать, насколько хорошо орган сгущает печеночную желчь, перемешивает ее и выбрасывает в двенадцатиперстную кишку при поступлении в нее пищевого комка.

Также дуоденальное зондирование позволяет оценивать состояние сфинктеров Люткенса и Одди, которые представляют собой своеобразные жомы, запирающие выход из желчного пузыря и выход из общего желчного протока в двенадцатиперстную кишку. Так, сфинктер Люткенса располагается в шейке желчного пузыря, и закрывает выход желчи из него в желчный проток. Благодаря сфинктеру Люткенса желчный пузырь остается закрытым "мешком", в котором желчь, поступающая из печени, накапливается, концентрируется и хорошо перемешивается. В норме, когда пищевой комок поступает в двенадцатиперстную кишку, это по различным механизмам обратной связи приводит к раскрытию сфинктера Люткенса и сокращению желчного пузыря, благодаря чему желчь поступает в желчный проток.

Сфинктер Одди располагается в месте впадения желчного протока в двенадцатиперстную кишку и, в свою очередь, закрывает желчный проток. В норме сфинктер Одди открывается, когда в желчном протоке появляется желчь из пузыря, пропускает ее в двенадцатиперстную кишку и снова закрывается.

Хорошая, правильная и согласованная работа сфинктеров Одди и Люткенса крайне важна для нормального функционирования желчевыделительной системы и пищеварения. При их чрезмерном напряжении или, напротив, расслаблении, а также рассогласованности появляются различные нарушения желчевыделения. Например, при избыточной сократимости сфинктеров они своевременно не открываются, что приводит к застою желчи и нарушению пищеварения из-за ее нехватки в кишке. А при расслаблении сфинктеров желчь свободно истекает из пузыря в кишку, раздражая ее, провоцируя рефлюксы и воспалительные явления.

Учитывая все вышесказанное, очевидно, что дуоденальное зондирование показано к проведению при наличии у человека заболеваний печени, желчного пузыря или желчевыводящих путей. Иными словами, зондирование проводят, когда нужно оценить состояние желчевыделительной системы.
5
спасибо Спасибо
Оглавление
  1. Ультразвуковое исследование – общие понятия
  2. УЗИ суставов – общая характеристика
  3. Когда и как делают УЗИ суставов?
  4. Норма и патология суставов на УЗИ
  5. Особенности УЗИ различных суставов
  6. Где сделать УЗИ суставов? Цена исследования
  7. Ломота в теле, в ногах, руках, в суставах и мышцах: причины, что делать – видео
  8. Исследования при ревматоидном артрите: рентген, МРТ, УЗИ. Ревматический и ревматоидный артриты – видео
  9. Боль в плече: причины, что делать – видео
  10. Лечение боли в колене за 10 минут без таблеток и уколов – видео
  11. Оздоровительная йога для суставов и сердца. Йога и давление – видео
  12. Дифференциальная диагностика ревматоидного артрита с красной волчанкой, артритом, подагрой – видео
  13. Нужно ли делать операцию при артрозе коленного сустава – видео
  14. Укол гиалуроновой кислоты в коленный сустав при остеоартрозе – видео

УЗИ сустава представляет собой современный неинвазивный (не предполагающий проникновения медицинских инструментов в физиологические отверстия тела) инструментальный метод обследования, благодаря которому врач может видеть на мониторе различные ткани и органы, лежащие близко или далеко от поверхности кожного покрова. Метод УЗИ основан на способности высокочастотных звуковых волн проникать во внутренние органы и ткани, частично поглощаться ими, частично отражаться и возвращаться обратно, выходя из тела. На выходе из тела волны улавливаются датчиками, которые переводят их из формы волновых колебаний в изображение на мониторе УЗИ-аппарата. Благодаря визуализации внутренних анатомических структур метод УЗИ позволяет выявлять заболевания и повреждения (гематомы, опухоли, кисты и проч.) суставов и околосуставных мягких тканей (например, сухожилий, мышц, связок и т.д.).

Чтобы получить четкое представление о методе УЗИ и его диагностических возможностях, необходимо знать его физические основы, которые мы рассмотрим в первую очередь.

Ультразвуковое исследование – общие понятия


Ультразвуковое исследование обозначается коротко аббревиатурой "УЗИ". Также данный метод инструментального обследования называется сонографией, ультрасонографией, эхосонографией. Все перечисленные термины являются синонимами "УЗИ", и могут использоваться для обозначения метода обследования. Однако в настоящее время наиболее часто среди и врачей, и ученых, и пациентов используется термин УЗИ. Рассмотрим, какое физическое явление лежит в основе УЗИ, и какую информацию о состоянии органов и тканей может давать этот способ обследования.

Физические основы метода УЗИ


Метод ультрасонографии позволяет визуализировать внутренние органы и ткани тела человека так, что врач видит их на мониторе УЗ-аппарата. Данный метод визуализации внутренних анатомических структур организма основан на способности звуковых волн высокой частоты проникать в ткани тела, в которых они частично отражаются, частично рассеиваются, частично поглощаются. Отраженные звуковые волны возвращаются обратно к поверхности кожи и выходят из тела. Именно такие, вышедшие из тканей обратно звуковые волны улавливаются специальными датчиками, а компьютерная программа переводит их в изображение на мониторе. Таким образом, ясно, что метод УЗИ основан на принципе эхо – а именно, на улавливании и регистрации отраженных от биологических тканей ультразвуковых волн.

Любое ультразвуковое исследование производят с помощью УЗ-аппарата, который состоит из многих частей, главными из которых являются монитор и различные сменные датчики. Именно на монитор выводится получаемое в результате сканирования внутренних органов их изображение. А датчики одновременно и посылают звуковые волны в ткани тела, и улавливают отраженные от органов вернувшиеся обратно волны. То есть датчик является и излучателем, и приемником ультразвуковых волн.

Подобная возможность использования одного датчика в качестве и испускателя, и приемника звуковых волн обеспечивается тем, что в нем установлен преобразователь с кристаллом, который позволяет переводить звуковые колебания в электрические сигналы, и обратно. Таким образом, сначала за счет пьезоэлектрического эффекта электрические сигналы, подаваемые на датчик, преобразуются в звуковые колебания, которые проходят в ткани тела, отражаются о них, выходят обратно с поверхности кожного покрова, улавливаются тем же датчиком, в котором пьезоэлемент снова преобразует звуковые волны в электрические сигналы. Далее эти электрические сигналы компьютерная программа автоматически преобразует в изображение органов и тканей, которые врач видит на мониторе УЗ-аппарата.
ВНИМАНИЕ!

Информация, размещенная на нашем сайте, является справочной или популярной и предоставляется только медицинским специалистам для обсуждения. Назначение лекарственных средств должно проводиться только квалифицированным специалистом, на основании истории болезни и результатов диагностики.




По всем вопросам, связанным с функционированием сайта, Вы можете связаться по E-mail: Адрес электронной почты Редакции: abc@tiensmed.ru или по телефону: +7 (495) 665-82-37

Последние
вопросы
Влияют ли антибиотики на результаты спермограммы?

Влияют ли антибиотики на результаты спермограммы?

» Ответ
Как оценивают подвижность сперматозоидов в результатах спермограммы?

Как оценивается подвижность сперматозоидов в результатах спермограммы?

» Ответ
Что необходимо сделать для улучшения спермограммы?

Что надо сделать для улучшения показателей спермограммы?

» Ответ
Следует ли придерживаться какой либо диеты перед сдачей спермограммы?

Нужно ли придерживаться какой либо специальной диеты перед сдачей спермограммы?

» Ответ
Могут ли гормоны оказать влияние на спермограмму?

Способны ли гормоны оказать влияние на спермограмму?

» Ответ
Возможна ли сдача спермограммы на дому?

Можно ли сдать спермограмму на дому?

» Ответ
Какие существуют показания к назначению спермограммы?

Какие факторы являются показаниями к назначению спермограммы?

» Ответ
Какие показатели учитываются в спермограмме?

Какие показатели учитываются в спермограмме?

» Ответ
Каковы нормальные показатели спермограммы?

Каковы нормальные показатели спермограммы?

» Ответ
В каких случаях делают посев грудного молока на стерильность?

В каких случаях делают посев грудного молока на стерильность?

» Ответ
Все вопросы