18+

Диагностика и методы исследования

Глоссарий

А

Б

Г

Д

К

Л

М

О

П

Р

С

Т

У

Ф

Х

Ц

Ч

Э

Я

13
спасибо Спасибо
Экскреторная урография – это метод лучевой диагностики, основанный на способности почек выделять контрастное вещество, которое было предварительно введено внутривенно. Экскреторная урография также называется внутривенной или контрастной. Таким образом, название отражает сущность метода – используется контрастное вещество, которое вводится внутривенно. Термин экскреторная – характеризует основную функцию почек, которая при этом изучается. Урография является золотым стандартом и, по сути, основным методом в диагностике урологических больных. Снимки, которые при этом получают, называются урограммами.

Косвенно, по данным экскреторной урографии, можно судить о функции и других органов мочеполовой системы.
13
спасибо Спасибо
Оглавление
  1. Что такое УЗИ брюшной полости? УЗИ брюшной полости в сравнении с другими методами исследования - (видео)
  2. Показания и противопоказания к УЗИ брюшной полости
  3. Методика проведения УЗИ брюшной полости
  4. Подготовка к УЗИ брюшной полости
  5. УЗИ здоровых органов брюшной полости. Грыжи брюшной полости на УЗИ
  6. УЗИ печени в норме. Ультразвуковая диагностика заболеваний печени
  7. УЗИ желчного пузыря и желчевыводящих протоков
  8. Исследование поджелудочной железы на УЗИ брюшной полости
  9. УЗИ желудочно-кишечного тракта (ЖКТ). Болезни желудка, кишечника на УЗИ. Ультразвуковая диагностика аппендицита - (видео)
  10. УЗИ селезенки
  11. УЗИ лимфатических узлов и сосудов брюшной полости (аорты, нижней полой вены)
  12. Расшифровка УЗИ брюшной полости
  13. Где сделать УЗИ брюшной полости?

Ультразвуковое исследование (УЗИ) представляет собой вид лучевой диагностики, при котором для получения диагностического изображения используется ультразвук. Получение диагностического изображения считается важным вспомогательным методом к клиническому обследованию при лечении различных заболеваний внутренних органов.

Ультразвуковое исследование также называется эхографией. Такое наименование связано с тем, что ультразвуковые волны, проходя через ткани человека, отражаются обратно в виде эха. Эхо, регистрируемое датчиком, служит основой для формирования изображения на экране аппарата УЗИ. Структуры различной плотности отражают ультразвуковые волны по-разному, из-за этого создается контрастное изображение.
11
спасибо Спасибо
Оглавление
  1. Общие сведения об осмотре глазного дна
  2. Виды осмотра глазного дна
  3. Как и когда делают осмотр глазного дна?
  4. Результаты осмотра глазного дна
  5. Что дает осмотр глазного дна у детей и беременных женщин?
  6. Стоимость и адреса проведения офтальмоскопии
  7. Осмотр глазного дна, лазерная терапия и хирургия глаза при диабете, патологиях сетчатки и зрительного нерва – видео
  8. Осмотр глазного дна: для чего проводится исследование – видео
  9. Сахарный диабет и зрение. Строение сетчатки. Диабетическая ретинопатия: симптомы (комментарии врача-офтальмолога) – видео
  10. Гониоскопия, HRT при глаукоме. Дифференциальная диагностика: глаукома, катаракта, иридоциклит – видео
  11. Ранняя диагностика глаукомы: механическая и компьютерная периметрия, тонометрия (комментарии врача-офтальмолога) – видео
  12. Диагностика диабетической ретинопатии: ангиография, офтальмоскопия, томография, УЗИ – видео
  13. Диагностика астигматизма: обследования, тесты. Дифференциальная диагностика астигматизма – видео
  14. Три анализа при ухудшении зрения – видео

Как и когда делают осмотр глазного дна?


Показания к осмотру глазного дна


Осмотр глазного дна назначается в случаях ухудшения зрения, болей области глаз, двоения в глазах, травмы глаза и наличия у человека любых других симптомов глазного заболевания. В таких ситуациях осмотр глазного дна проводится с целью диагностики, то есть для распознавания имеющегося заболевания и, соответственно, постановки правильного диагноза. Также с диагностической целью осмотр глазного дна назначается и показан при появлении у человека симптомов, свидетельствующих о поражении центральной нервной системы, таких, как нарушение координации движений и равновесия, частые головные боли и головокружения, резкое снижение остроты зрения, потеря способности различать цвета и т.д. Для неврологов результат осмотра глазного дна очень важен, так как он позволяет косвенно судить о степени нарушений кровообращения в головном мозге.

Кроме того, осмотр глазного дна показан людям, которые страдают какими-либо из нижеперечисленных заболеваний глаз с целью оценки скорости прогрессирования патологии и определения степени поражения сетчатки и сосудов:

При наличии у человека каких-либо из вышеуказанных глазных патологий осмотр глазного дна проводится регулярно (раз в 3 – 12 месяцев) с целью оценки степени прогрессировании заболевания.
13
спасибо Спасибо
Оглавление
  1. Что такое ультразвуковое исследование (УЗИ) почек?
  2. Показания и противопоказания к УЗИ почек
  3. Методика проведения УЗИ почек
  4. Подготовка к УЗИ почек - (видео)
  5. УЗИ почек в норме у взрослых и детей. Что показывает УЗИ почек?
  6. Изображение на УЗИ почек при различных заболеваниях. Гидронефроз. Острая и хроническая почечная недостаточность
  7. Диагностика воспалительных заболеваний почек с помощью УЗИ. Гломерулонефрит. Пиелонефрит - (видео)
  8. Аномалии структуры и положения почек на УЗИ. Заболевания почек, сопровождающиеся образованием кист
  9. Мочекаменная болезнь (МКБ). Камни почек на УЗИ - (видео)
  10. УЗИ почек при обменных нарушениях (подагра, сахарный диабет, амилоидоз)
  11. Опухоли почек на УЗИ
  12. Расшифровка результата УЗИ почек. Заключение УЗИ почек
  13. В каких случаях необходимо совместить УЗИ почек с УЗИ других органов?
  14. Где сделать УЗИ почек?

Ультразвуковое исследование (УЗИ) – способ медицинской диагностики, основанный на получении изображения органов и тканей путем регистрации ультразвуковых волн, отраженных от биологических тканей и жидкостей. Ультразвуковое исследование также называют эхографией. Изображение на экране создается путем регистрации эха ультразвуковых волн. В настоящее время с помощью УЗИ можно исследовать все органы и ткани человека, получая ценную диагностическую информацию.

Источником ультразвуковых волн является пьезоэлектрический элемент. Открытие пьезоэлектрического эффекта в 1881 году Пьером и Жаком Кюри легло в основу создания ультразвукового метода диагностики. Данный эффект заключается в способности некоторых веществ (кварц, титанат бария) под действием электрического тока становиться источниками ультразвуковых волн. А при воздействии на них ультразвуковых колебаний они начинают вырабатывать электрический ток. Таким образом, ультразвуковой источник является одновременно и датчиком отраженных волн.
11
спасибо Спасибо
Оглавление
  1. Общие понятия об УЗИ
  2. УЗИ стопы – общие сведения
  3. Когда и как делают УЗИ стопы?
  4. Эхографическая картина мягких тканей на УЗИ стопы в норме и при патологии
  5. Где и за сколько можно сделать УЗИ стопы?
  6. Вся правда об УЗИ – видео
  7. Неврома Мортона: боль в стопе, роль обуви, лечение и профилактика – видео
  8. Воспаление сухожилия голеностопного сустава или атеросклеротическая бляшка – видео
  9. Исследования при ревматоидном артрите: рентген, МРТ, УЗИ. Ревматический и ревматоидный артриты – видео

УЗИ стопы представляет собой инструментальный метод обследования, позволяющий визуализировать внутренние анатомические структуры опорно-двигательного аппарата. В основе метода УЗИ лежит применение высокочастотных звуковых волн, которые способны проникать в ткани тела, отражаться от них и возвращаться обратно к поверхности кожного покрова, где их фиксируют специальные датчики, и из волн переводят в форму изображения. В настоящее время УЗИ стопы применяют для выявления повреждений и заболеваний мягких тканей (сухожилий, мышц, связок и т.д.), а также для диагностики гематом, опухолей, кист, скоплений жидкости в тканях стопы. В общем можно сказать, что УЗИ стопы – это безболезненный, безопасный и неинвазивный метод (не предполагает введения инструментов в полости тела), не доставляющий дискомфорта и хорошо переносящийся пациентами любого возраста и пола.

Чтобы ясно представлять себе сущность метода УЗИ, а также его диагностические возможности применительно к выявлению заболеваний стопы, следует знать физические основы ультразвуковых исследований, которые мы рассмотрим в следующем разделе.

Общие понятия об УЗИ


УЗИ – это аббревиатура, образованная от словосочетания "ультразвуковое исследование", которое и есть полное наименование данного метода диагностики. Синонимами термина УЗИ являются такие термины, как сонография, ультрасонография, эхосонография. В настоящее время для обозначения метода исследования, в основе которого лежит использование ультразвуковых волн, используются все приведенные термины (УЗИ, сонография, ультрасонография, эхосонография). Однако наиболее часто употребляемым термином является УЗИ. Рассмотрим, на чем основано УЗИ, и какую информацию оно моет давать о состоянии органов и тканей.

На чем основан метод УЗИ?


Метод ультразвуковой диагностики различных заболеваний основан на том, что звуковые волны высокой частоты способны проникать в ткани тела, отражаться от них, рассеиваться и частично поглощаться, возвращаясь обратно к поверхности кожи. Такие отраженные от внутренних анатомических структур ультразвуковые волны улавливаются специальными датчиками, которые переводят их сигналы в изображение, видимое врачом на мониторе. Таким образом, очевидно, что в основе метода УЗИ лежит регистрация отраженных от тканей сигналов звуковых волн (принцип эхо).

Ультразвуковое исследование проводится при помощи специального аппарата, основным элементом которого является датчик. Такой датчик выступает одновременно в роли и излучателя ультразвуковых волн, и приемника отраженных от тканей волн. Возможность использования одного и того же датчика для испускания и приема звуковых волн достигается за счет того, что в таком датчике находится преобразователь с кристаллом, создающим пьезоэлектрический эффект, за счет которого происходит преобразование электрических сигналов в ультразвуковые волны, и обратно. То есть сначала электрические сигналы под влиянием пьезоэлектрического эффекта преобразуются в ультразвуковые волны, которые и проходят в ткани тела, где они частично поглощаются, частично рассеиваются и частично отражаются, возвращаясь обратно к поверхности кожи. Здесь, на кожной поверхности отраженные ультразвуковые волны улавливаются тем же датчиком, который их испустил, и за счет пьезоэлектрического эффекта снова преобразуются в электрические сигналы. А уже электрические сигналы при помощи компьютерной программы преобразуются в изображение изучаемых анатомических структур, которые и видит врач на экране.

Какие виды датчиков УЗИ существуют, и какие датчики используются для УЗИ стопы?


По принципу своего устройства в настоящее время имеется два вида датчиков для УЗИ, таких, как:
  • Механические датчики. Используются для медленного сканирования, при котором изображение исследуемых тканей тела на экране видно секторами.
  • Электронные датчики. Позволяют сканировать изучаемые анатомические объекты быстро, то есть в реальном времени, тут же получая изображение органов на мониторе УЗ-аппарата. В зависимости от формы, электронные датчики бывают секторными, линейными или выпуклыми (конвексными).

По назначению датчики для УЗИ подразделяются на следующие виды:
  • Датчики для сканирования с кожного покрова;
  • Датчики для введения в полости тела (например, для сканирования через влагалище, прямую кишку, глотку);
  • Датчики для точного наведения игл для забора биопсии;
  • Датчики для введения в полости тела во время проведения операций (их можно стерилизовать, как хирургические инструменты).

В зависимости от принципа действия, выделяют эхоимпульсные и доплеровские датчики. Эхоимпульсные датчики используются для сканирования различных органов тела, а допплеровские – для оценки кровотока и сократительной активности сердца. Бывают датчики, соединяющие в себе свойства эхоимпульсных и допплеровских.

Кроме того, бывает несколько разновидностей датчиков, испускающих ультразвуковые волны различной частоты. Разная частота волн нужна для сканирования органов, залегающих на разной глубине относительно поверхности кожного покрова, так как возможность увидеть те или иные анатомические структуры зависит от проникающей способности волн. Так, чем ниже частота испускаемых датчиком ультразвуковых волн, тем глубже они могут проникать в ткани тела. И наоборот, чем выше частота испускаемых волн, тем на меньшую глубину они проникают в ткани. Соответственно, для сканирования глубоко лежащих органов нужны датчики, испускающие волны с низкой частотой, а для сканирования поверхностных анатомических структур – датчики, излучающие волны высокой частоты. Например, для сканирования органов, расположенных далеко от поверхности кожи (сердце, средостение, селезенка и т.д.), используются датчики, испускающие волны с частотой 2,5 – 5 МГц. Для сканирования органов, расположенных относительно глубоко в теле (печень, желчевыводящие пути, матка и т.д.), применяют датчики, испускающие волны средней частоты 5 – 10 МГц. А для сканирования анатомических структур, расположенных близко к коже (мышцы, сухожилия, связки, суставы и проч.), применяют датчики, испускающие ультразвуковые волны с частотой 10 – 15 МГц.

Для производства УЗИ стопы в настоящее время применяют электронные эхоимпульсные датчики для сканирования с кожного покрова, испускающие волны с частотой 10 – 15 МГц. Они позволяют визуализировать и оценивать состояние тканей стопы и выявлять различные патологические изменения в них.
11
спасибо Спасибо
Оглавление
  1. Суть, физический принцип, различия КТ и МРТ
  2. Когда лучше КТ, а когда – МРТ
  3. КТ или МРТ при заболеваниях различных органов
  4. МРТ и КТ – в чем разница? Показания и противопоказания к МРТ с контрастом и без, устройство и функционирование МР-томографа – видео
  5. Диагностика болезни Альцгеймера. Исследования при болезни Альцгеймера: МРТ, КТ, ЭЭГ – видео
  6. Диагностика заболеваний щитовидной железы: кровь, УЗИ, МРТ, сцинтиграфия, пункция (биопсия) – видео
  7. МРТ, КТ и рентген – вред для здоровья. Когда нужны данные исследования – видео

Бурное развитие техники в последние десятилетия привело к появлению новых, высокоинформативных и точных методов диагностики, возможности которых превышают таковые у старых диагностических методик, использующихся довольно давно (рентген, УЗИ и др.). К таким относительно новым диагностическим методам относят компьютерную томографию (КТ) и магнитно-резонансную томографию (МРТ), каждая из которых имеет свои преимущества и недостатки. Именно эти два новых метода в последние годы стали весьма популярными, но, к сожалению, назначаемыми и используемыми не всегда адекватно и правильно. Причем нужно четко представлять себе, что из этих двух методов нельзя просто и однозначно выбрать лучший, так как у них разные диагностические возможности, и потому каждый метод оказывается лучшим только применительно к конкретной ситуации. Поэтому ниже мы рассмотрим суть КТ и МРТ, а также укажем, как выбрать из этих двух методов наилучший применительно к конкретной ситуации.

Суть, физический принцип, различия КТ и МРТ


Чтобы понимать, чем отличаются методы КТ и МРТ, и иметь возможность выбрать лучший из них в каждой конкретной ситуации, следует знать их физические принципы, суть и диагностические спектры. Именно эти аспекты мы рассмотрим ниже.

Принцип компьютерной томографии несложен, он заключается в том, что сфокусированные рентгеновские лучи проходят через исследуемую часть тела или орган в различных направлениях под разными углами. В тканях энергия рентгеновских лучей ослабляется за счет ее поглощения, причем разные органы и ткани поглощают рентгеновское излучение с неодинаковой силой, вследствие чего происходит неравномерное ослабление лучей после прохождения по разным нормальным и патологическим анатомическим структурам. Затем на выходе специальные датчики регистрируют уже ослабленные пучки рентгеновских лучей, трансформируют их энергию в электрические сигналы, на основании которых компьютерная программа выстраивает полученные послойные изображения изучаемого органа или части тела. Благодаря тому, что разные ткани ослабляют рентгеновские лучи с неодинаковой силой, на итоговых снимках они четко отграничиваются и становятся хорошо видимыми за счет неравномерной окраски.

В прошлом использовалась пошаговая компьютерная томография, когда для получения каждого последующего среза стол двигался ровно на шаг, соответствующий толщине слоя органа, а рентгеновская трубка описывала вокруг обследуемой части тела круг. Но в настоящее время используется спиральная КТ, когда стол движется постоянно и равномерно, а рентгеновская трубка описывает вокруг исследуемой части тела траекторию спирали. Благодаря технологии спиральной КТ получаемые изображения стали объемными, а не плоскими, толщина срезов очень маленькой – от 0,5 до 10 мм, что и позволило выявлять даже самые маленькие патологические очаги. Кроме того, благодаря спиральной КТ стало возможным делать снимки в определенную фазу прохождения контрастного вещества по сосудам, что обеспечило появление отдельной методики ангиографии (КТ-ангиографии), которая значительно информативнее рентгеновской ангиографии.

Последним достижением КТ стало появление мультиспиральной компьютерной томографии (МСКТ), когда рентгеновская трубка движется вокруг исследуемой части тела по спирали, а прошедшие через ткани ослабленные лучи улавливаются датчиками, стоящими в несколько рядов. МСКТ позволяет получать одновременно точные изображения сердца, головного мозга, оценивать строение сосудов и микроциркуляцию крови. В принципе, врачи и ученые полагают, что МСКТ с контрастом – это лучший метод диагностики, который в отношении мягких тканей имеет такую же информативность, как и МРТ, но дополнительно позволяет визуализировать и легкие, и плотные органы (кости), чего не может МРТ.

Несмотря на такую высокую информативность как спиральной КТ, так и МСКТ, применение этих метод ограничивается из-за высокой лучевой нагрузки, которую получает человек в ходе их производства. Поэтому КТ должна проводиться только по показаниям.
11
спасибо Спасибо
Оглавление
  1. Компьютерная томография (КТ) почек – общая характеристика метода и что показывает
  2. Разновидности компьютерной томографии почек
  3. Компьютерная томография (КТ) почек с контрастированием (с контрастом, с контрастным веществом)
  4. Однофотонная эмиссионная компьютерная томография почек
  5. Показания к компьютерной томографии почек
  6. Противопоказания к компьютерной томографии почек
  7. 15 признаков больных почек – видео
  8. КТ и МРТ: показания и противопоказания – видео
  9. Как правильно пройти компьютерную томографию почек – видео
  10. Компьютерная томография (КТ) почек с контрастированием и без контраста – подготовка
  11. Можно ли кушать перед компьютерной томографией почек
  12. Как делается компьютерная томография (КТ) почек
  13. Компьютерная томография (КТ) почек ребенку
  14. Где сделать компьютерную томографию (КТ) почек?
  15. Норма компьютерной томографии почек
  16. Расшифровка компьютерной томографии почек
  17. МРТ или КТ почек – как выбрать, что лучше?
  18. В чем разница между КТ и МРТ – видео
  19. Компьютерная томография (КТ) почек (с контрастированием и без) – цена
  20. Что убивает почки: красное мясо, задержка мочеиспускания, ожирение и неправильная гигиена – видео
  21. Почечная колика: как она развивается и проявляется, как ее успокоить. Профилактика. Как удаляют камни из почек – видео

Компьютерная томография почек является лучевым методом диагностики, основанным на свойствах рентгеновского излучения, позволяющим получать изображения органа в виде послойных срезов. На основании полученных изображений почек производится выявление различных патологий как самих почек, так и почечных сосудов.

Компьютерная томография (КТ) почек – общая характеристика метода и что показывает


Компьютерная томография (КТ) почек является способом инструментальной диагностики различных заболеваний этого органа. КТ относится к лучевым методам исследования, так как для ее производства используется рентгеновское излучение и его свойство проходить сквозь биологические ткани. Таким образом, при компьютерной томографии почек через данный орган пропускаются рентгеновские лучи, часть которых поглощается тканями, тем самым ослабляя рентгеновское излучение. А специальные устройства (детекторы) улавливают прошедшее через ткани ослабленное рентгеновское излучение, и далее, на основании степени его ослабления, компьютерная программа в автоматическом режиме создает изображение исследуемого органа или ткани и выводит его на монитор компьютера. Соответственно, врач может рассматривать полученное изображение почек на мониторе, изучать особенности органов и делать выводы о наличии или отсутствии патологических изменений.

С учетом вышеописанного принципа компьютерной томографии вполне закономерен вопрос о том, чем же этот метод диагностики отличается от обычного, привычного рентгена. Чтобы понять, в чем заключаются отличия рентгена от компьютерной томографии, нужно подробнее рассмотреть принцип работы томографа и рентгеновской установки.

Так, при выполнении обычного рентгена человек располагается между лучевой трубкой, которая испускает рентгеновские волны, и детектором-приемником, который фиксирует прошедшие сквозь ткани лучи. То есть источник рентгеновского излучения и принимающее его устройство располагаются на одной линии, напротив друг друга. А исследуемая часть тела для получения ее изображений должна быть помещена между лучевой трубкой и детектором-приемником. При выполнении рентгена излучение проходит насквозь все органы и ткани, оказавшиеся на его пути, в результате чего получается двумерное изображение (как фото) многочисленных анатомических структур, расположенных перпендикулярно направлению движения рентгеновского луча. Поэтому на рентгеновском снимке органы, расположенные на разной глубине, но находящиеся на одной линии, накладываются друг на друга (подобно тому, как на картине различными оттенками одного цвета сначала нарисовать одно изображение, затем поверх него второе и т.д.). Из-за такого наложения анатомических структур друг на друга на рентгенограммах создаются многочисленные помехи, значительно снижающие информативность исследования. Например, если почка окажется опущенной и будет располагаться на одной линии с костями таза, то последние закроют ее на рентгеновском снимке, вследствие чего органа вовсе не будет видно.

При компьютерной томографии, в отличие от рентгена, лучевая трубка находится не в статичном положении, а постоянно движется вокруг исследуемой части тела, описывая круги. Благодаря такому круговому движению лучевой трубки вокруг тела рентгеновские лучи посылаются и проходят сквозь ткани под разными углами. А детекторы-приемники установлены в ряд и улавливают ослабленные после прохождения через ткани рентгеновские лучи, пущенные под разными углами. Далее специальная программа обрабатывает полученные данные, преобразуя их в изображения почек в разных плоскостях. В результате врач на мониторе видит несколько картинок, каждая из которых являет собой вид почек как бы в разрезе на том или ином уровне. Причем эти срезы многочисленные, сделанные через каждые 0,5 – 10 мм. Иными словами, врач видит срезы почек так, будто это порезанный кольцами лук, и на каждом срезе можно отчетливо рассмотреть внутреннюю структуру и все ее особенности.

Таким образом, рентген дает возможность сделать просто двумерное изображение органа, а компьютерная томография позволяет получить несколько снимков, представляющих собой срезы почек на разном уровне. Для наглядной иллюстрации разницы между рентгеновским и томографическими снимками приведем аналогию. Представим себе, что моделью почек является луковица. Если луковицу снять рентгеном, то на пленке получится плоский овальный предмет с неравномерной окраской внутри, отражающей состояние его внутренностей. А если луковицу снять компьютерным томографом, то получится серия изображений, каждое из которых соответствуют тонкому кольцу, отрезанному от головки лука. То есть КТ почек позволяет получить изображение органа так, будто его нарезали тонкими пластинками, как лук кольцами.

Соответственно, точность и информативность компьютерной томографии почек гораздо выше, чем у обычного рентгена, так как врач может рассматривать структуру тканей на послойных виртуальных срезах. Таким образом, очевидно, что хотя и рентген, и компьютерная томография основаны на одном и том же физическим принципе, но КТ – точнее и информативнее.
11
спасибо Спасибо
Магнитно-резонансная томография (МРТ, ЯМР) почек представляет собой информативный и безопасный метод диагностики почечной патологии, основанный на применении радиоволн и магнитного поля, при воздействии которых на ткани получаются послойные изображения изучаемого органа.

МРТ почек – общая характеристика и суть метода


Магнитно-резонансная томография почек – это безопасное, высокоинформативное, неинвазивное (не предполагающее введения в физиологические отверстия тела медицинских инструментов) исследование, основанное на воздействии магнитного поля и радиоволн на ткани, и позволяющее с высокой точностью диагностировать почечную патологию и определять степень ее выраженности.

В период появления магнитно-резонансная томография называлась "ядерно-магнитно-резонансная томография (ЯМРТ)" или "ядерно-магнитный резонанс (ЯМР)". Причем слово "ядерный" в названии метода не имело никакого отношения к проникающей радиации, ядерным реакторам, ядерным бомбам и т.д. Слово "ядерный" в терминах отражало лишь то, что в ходе проведения исследования производится воздействие магнитным полем на ядра атомов водорода, а не радиоактивное облучение органов и тканей. Тем не менее, ввиду негативных устойчивых ассоциаций со словом "ядерный", пришлось сменить первоначальное название метода диагностики на современное – магнитно-резонансная томография, которое не несет "опасных" ассоциаций и не отталкивает пациента от обследования.

Магнитно-резонансная томография, как уже было сказано выше, основана на физическом явлении ядерного магнитного резонанса. Данное явление заключается в том, что при воздействии на атомы водорода магнитного поля их ядра поглощают энергию и изменяют ориентацию в пространстве. Затем, когда действие магнитного поля прекращается, атомы водорода возвращаются в свою исходную ориентацию и выделяют ранее поглощенную энергию. Эта высвобождаемая энергия улавливается специальными датчиками, измеряются ее значения, и при помощи компьютерной программы переводятся в изображения почек (и мочевыводящих путей), которые врач видит на мониторе.

Поскольку атомы водорода присутствуют в каждой молекуле биологических веществ, из которых состоит любой орган и ткань, в том числе почки и мочевыводящие пути, эффект ядерного магнитного резонанса позволяет получать изображение исследуемого органа на любой глубине и по любой плоскости. Именно это и происходит в ходе проведения магнитно-резонансной томографии – врач получает на экране целые серии снимков, которые представляют собой как бы разрезы почек на тонкие слои-ломтики по разным плоскостям. Чтобы наглядно представить себе, какие изображения врач получает в результате МРТ, можно в качестве модели почки принять палку колбасы. Далее, чтобы изучить ее внутреннюю структуру, нужно порезать палку на тонкие ломтики, на которых будут видны мельчайшие детали строения. То же самое происходит при МРТ – методика позволяет получить множество снимков, каждый из которых представляет собой как бы срезы, этакие тонкие ломтики почек. И более того, если колбасу можно порезать только по одной плоскости, то МРТ дает изображения почек в разрезе послойно в трех плоскостях (повдоль, поперек и по диагонали).

Соответственно, такие множественные послойные изображения почек по трем плоскостям позволяют детально рассмотреть структуру органа, определить размеры его частей, выявить даже самые мелкие патологические очаги в самой толще тканей. МРТ позволяет диагностировать даже самые маленькие патологические образования, так как толщина получаемых срезов составляет 3 – 5 мм.

Из-за наличия водорода в любой молекуле, составляющей тот или иной орган, МРТ позволяет отлично визуализировать именно мягкие ткани, то есть внутренние органы, сосуды, мышцы, связки, хрящи и т.д. А вот плотные структуры (кости) МРТ визуализирует плохо из-за того, что в них биологические молекулы упакованы очень плотно, и выделяемая их атомами водорода энергия после воздействия магнитного поля как бы накладывается друг на друга, не давая возможности получить четкие изображения. Это означает, что МРТ отлично подходит для диагностики патологий именно мягких органов, в том числе почек.

Так, результаты МРТ дают возможность диагностировать опухоли почек, определять их характер (доброкачественные или злокачественные), размеры, степень распространенности, скорость роста, поражение окружающих тканей, стадию онкологического процесса и т.д. Фактически, что касается диагностики рака почек, МРТ является единственным методом, позволяющим сразу комплексно определить практически все важные параметры опухоли и, в связи с этим, избавляющим от необходимости проводить другие дополнительные исследования (УЗИ, биопсия и т.д.).

Кроме того, МРТ позволяет диагностировать воспалительные процессы в почках и мочевыводящих путях (пиелонефриты, гломерулонефриты, абсцессы, карбункулы и т.д.), паразитарные инфекции, сосудистую патологию (сужение или аневризма почечной артерии, тромбоз почечной вены и т.д.), травматические повреждения, кисты почек, мочекаменную болезнь, аномалии строения почек (удвоение почек, неправильное расположение органа, врожденный поликистоз и т.д.), гидронефроз и т.д. Помимо выявления заболеваний, МРТ дает возможность оценить размеры, расположение, форму, характер патологических очагов и степень тяжести патологии.

Магнитное поле и радиоволны, применяемые для МРТ, не оказывают отрицательного влияния на здоровье и не дают лучевой нагрузки, в отличие от КТ или рентгена. Поэтому само проведение магнитно-резонансной томографии неопасно для человека, вследствие чего такое исследование может производиться и детям, и пожилым людям, и беременным женщинам, но, естественно, исключительно по строгой необходимости.

Определенными преимуществами МРТ перед другими методами обследования почек является отсутствие лучевой нагрузки, возможность получения снимка-среза на любом уровне и по любой плоскости, а также отсутствие артефактов от костей, закрывающих собой многие важные структуры. К недостаткам МРТ почек относят необходимость неподвижно лежать во время исследования, относительную длительность обследования, высокую стоимость и невозможность использования при наличии у человека кардиостимуляторов или ферромагнитных имплантов.

Так как МРТ почек позволяет получить очень качественные и точные снимки органа, то перед прохождением обследования желательно посетить уролога или нефролога, который сможет сформулировать для радиолога конкретные вопросы о состоянии органа.
12
спасибо Спасибо
Оглавление
  1. Рентгеновское исследование кишечника. Возможности различных видов рентгеновского исследования
  2. Показания и противопоказания к рентгену кишечника - (видео)
  3. Методика проведения рентгена кишечника
  4. Подготовка к проведению рентгена кишечника
  5. Рентгеновская картина кишечника в норме
  6. Описание заболеваний кишечника с помощью рентгенологических синдромов. Врожденные и приобретенные аномалии кишечника
  7. Острые состояния кишечника (острый живот). Диагностика с помощью рентгена
  8. Воспалительные заболевания кишечника на рентгене - (видео)
  9. Рентгенологическая диагностика опухолевых заболеваний кишечника. Рак кишечника
  10. Где сделать рентген кишечника?

Человек чувствует себя здоровым, когда все его органы работают слаженно. В организме нет бесполезных органов и систем. Неправильный режим питания, бесконтрольное употребление медикаментов, малоподвижный образ жизни и частые стрессы неблагоприятно сказываются на состоянии человеческого организма. Иногда мишенью болезни становится кишечник.

Заболевания органов пищеварения очень неприятны. Ежедневно человек нуждается в получении питательных веществ, поступающих с пищей. Во многих случаях процесс потребления еды доставляет людям огромное удовольствие. При возникновении сбоя в системе пищеварения человек теряет аппетит, слабеет, худеет, у него болит живот, появляется рвота, понос или запор. При сохранении недомоганий подобного рода на протяжении длительного времени необходимо обратиться к врачу.
12
спасибо Спасибо
Оглавление
  1. Основы рентгеновского исследования легких. Виды рентгеновского исследования легких - (видео)
  2. Показания и противопоказания к рентгену легких
  3. Методика проведения рентгеновского исследования легких. Подготовка к рентгену легких
  4. Рентген легких в норме. Как выглядят здоровые легкие на рентгене?
  5. Расшифровка рентгена легких. Рентгенологические синдромы при различных заболеваниях легких
  6. Диагностика инфекционных заболеваний легких с помощью рентгена - (видео)
  7. Рентгенодиагностика доброкачественных и злокачественных опухолей легких
  8. Обструктивные заболевания легких на рентгене. Рубцовые изменения легких на рентгене (пневмосклероз). Рентген легких курильщика - (видео)
  9. Лучевая диагностика при неотложных состояниях легких. Отек, инфаркт легких. Гидроторакс, пневмоторакс
  10. Где можно выполнить рентген легких?

Обструктивные (обструкция – закупорка, непроходимость) заболевания легких характеризуются хроническим течением и схожими симптомами при большом разнообразии рентгенологической картины. Курение – один из основных факторов, которые приводят к данной группе заболеваний. В результате отсутствия кислорода и хронического воспаления в легких развивается соединительная ткань, что также называется пневмосклерозом.

К заболеваниям, в составе которых присутствует обструктивный компонент, относятся:
  • хроническая обструктивная болезнь легких;
  • хронический бронхит;
  • эмфизема;
  • бронхиальная астма и некоторые другие.
12
спасибо Спасибо
Урофлоуметрия – медицинское исследование процесса мочеиспускания и его параметров. Суть исследования заключается в том, что процесс мочеиспускания пациента регистрируется специальными датчиками и обрабатывается компьютерными программами. При этом исследуется целый ряд параметров (скорость мочеиспускания, объем мочи за единицу времени и так далее), которые позволяют выявить и диагностировать некоторые заболевания мочеполовой системы у мужчин и у женщин.

Чтобы понять принцип действия и значение урофлоуметрии при диагностике различных заболеваний, необходимы общие представления о функционировании мочевого пузыря и мочевыводящих путей (уретры).

В нормальных условиях образующаяся в почках моча поступает в мочевой пузырь и накапливается в нем. Стенка мочевого пузыря включает мышечный слой (так называемый детрузор), который участвует в процессе мочеиспускания. При поступлении мочи в мочевой пузырь детрузор расслабляется, растягивается, в результате чего объем пузыря увеличивается. Одновременно с этим сокращаются мышцы шейки мочевого пузыря, тазового дна и уретры (мочеиспускательного канала), что также препятствует выходу мочи из мочевого пузыря.
12
спасибо Спасибо
Оглавление
  1. Что такое рентген грудной клетки?
  2. Показания и противопоказания к проведению рентгенографии грудной клетки
  3. Методика проведения рентгена грудной клетки. Подготовка к рентгену грудной клетки
  4. Вред от лучевых методов диагностики. Рентген грудной клетки для детей и беременных
  5. Описание нормального рентгена грудной клетки. Что показывает рентген здоровой грудной клетки (фото)?
  6. Деформации грудной клетки на рентгене
  7. Диагностика заболеваний легких с помощью рентгена грудной клетки
  8. Диагностика заболеваний сердца с помощью рентгена грудной клетки
  9. Доброкачественные и злокачественные опухоли (рак) на рентгене грудной клетки
  10. Где можно сделать рентген грудной клетки?

Деформации грудной клетки - состояния, при которых нарушается форма костного скелета грудной клетки. В зависимости от выраженности данных нарушений происходит смещение внутренних органов и угнетение их функции. Деформации грудной клетки могут быть врожденными и приобретенными. В первом случае причиной деформаций является генетическая предрасположенность, а во втором – травмы, неправильная осанка, рахит, эмфизема и другие заболевания.
12
спасибо Спасибо
Миелография - это метод диагностики, позволяющий получить изображение спинного мозга, а точнее, его субарахноидального пространства. Субарахноидальное пространство – это пространство между мягкой и паутинной оболочкой, которое заполнено спинномозговой жидкостью (синоним – ликвором). Именно поэтому миелография также называется ликворографией – поскольку позволяет детально изучить субарахноидальное пространство с циркулирующей в нем жидкостью.

В основе метода лежит принцип рентгенографии, которая проводится после того как в субарахноидальное пространство было введено контрастное вещество. Обладая большей плотностью, чем спинномозговая жидкость, введенное вещество, стекая по паутинному пространству, детальное обрисовывает спинной мозг и само пространство.
10
спасибо Спасибо
Оглавление
  1. Общие сведения об осмотре глазного дна
  2. Виды осмотра глазного дна
  3. Как и когда делают осмотр глазного дна?
  4. Результаты осмотра глазного дна
  5. Что дает осмотр глазного дна у детей и беременных женщин?
  6. Стоимость и адреса проведения офтальмоскопии
  7. Осмотр глазного дна, лазерная терапия и хирургия глаза при диабете, патологиях сетчатки и зрительного нерва – видео
  8. Осмотр глазного дна: для чего проводится исследование – видео
  9. Сахарный диабет и зрение. Строение сетчатки. Диабетическая ретинопатия: симптомы (комментарии врача-офтальмолога) – видео
  10. Гониоскопия, HRT при глаукоме. Дифференциальная диагностика: глаукома, катаракта, иридоциклит – видео
  11. Ранняя диагностика глаукомы: механическая и компьютерная периметрия, тонометрия (комментарии врача-офтальмолога) – видео
  12. Диагностика диабетической ретинопатии: ангиография, офтальмоскопия, томография, УЗИ – видео
  13. Диагностика астигматизма: обследования, тесты. Дифференциальная диагностика астигматизма – видео
  14. Три анализа при ухудшении зрения – видео

Осмотр глазного дна представляет собой диагностическую манипуляцию в практике врачей-офтальмологов, которая проводится при помощи особых инструментов и предназначается для оценки состояния сетчатки, диска зрительного нерва и сосудов глазного дна. Благодаря осмотру глазного дна врач может выявлять различные патологии глубоко лежащих структур глаза на ранних стадиях их появления и развития.

Общие сведения об осмотре глазного дна


Как называется осмотр глазного дна?


Процедура осмотра глазного дна называется офтальмоскопия. Данный термин образован от двух греческих слов – ophtalmos и skopeo, которые в переводе означают соответственно "глаз" и "смотреть". Таким образом, подстрочный перевод термина офтальмоскопия с греческого означает "смотреть глаз".

Однако же под термином "офтальмоскопия" подразумевается осмотр глазного дна в принципе. То есть именно изучение состояния глазного дна с целью выявления патологических изменений в глубоких структурах глаза. Такой осмотр может проводиться при помощи различных инструментов и, соответственно, в зависимости от используемых приборов, называться по-разному. Так, собственно офтальмоскопией называется осмотр глазного дна при помощи офтальмоскопов. Осмотр глазного дна при помощи щелевой лампы и набора линз (линзы Гольдмана, фундус-линзы и проч.) называется биомикроскопией. То есть и офтальмоскопия, и биомикроскопия – это способы осмотра глазного дна, которые проводятся различными медицинскими инструментами, но предназначаются для одних и тех же целей.

Ниже мы рассмотрим все виды осмотра глазного дна по отдельности, так как между ними имеются различия в диагностической информативности, способах проведения и т.д.

Какой врач проводит осмотр глазного дна (окулист, офтальмолог)?


Осмотр глазного дна проводится врачом, специализирующемся на диагностике и лечении различных заболеваний глаз. Врач такой специальности называется офтальмологом или окулистом (записаться). Оба понятия, и офтальмолог, и окулист – совершенно правильные и равнозначные. Просто термин "офтальмолог" представляет собой название специалиста по-гречески, а "окулист" – на латыни.

Что такое глазное дно?


Чтобы понимать, что представляет собой глазное дно, необходимо в общих чертах знать строение глаза. Глаз представляет собой сложно устроенный орган, схематичное строение которого изображено на рисунке 1.

10
спасибо Спасибо
Оглавление
  1. Общие сведения о глюкозотолерантном тесте
  2. Проведение глюкозотолерантного теста
  3. Результаты глюкозотолерантного теста
  4. Глюкозотолерантный тест при беременности
  5. Где выполняется и цена на глюкозотолерантный тест
  6. 13 первых признаков сахарного диабета, которые нельзя пропустить – видео
  7. Уровень сахара в крови и сахарный диабет. Признаки, причины и симптомы диабета, особенности питания, препараты – видео
  8. Как снизить сахар крови без таблеток – видео
  9. Сахарный диабет и зрение. Строение сетчатки. Диабетическая ретинопатия: симптомы – видео

Глюкозотолерантный тест представляет собой лабораторный анализ, предназначенный для выявления скрытых нарушений углеводного обмена, таких, как преддиабет, ранние этапа сахарного диабета.

Общие сведения о глюкозотолерантном тесте


Названия глюкозотолерантного теста (оральный глюкозотолерантный тест, проба с 75 г глюкозы, тест на толерантность к глюкозе)


В настоящее время общепринятым в России является название метода "глюкозотолерантный тест (ГТТ)". Однако на практике также используются и другие названия для обозначения этого же лабораторного метода диагностики, которые являются по своей сути синонимами термина "глюкозотолерантный тест". Такими синонимами термина ГТТ являются следующие: оральный глюкозотолерантный тест (ОГТТ), пероральный глюкозотолерантный тест (ПГТТ), тест на толерантность к глюкозе (ТТГ), а также проба с 75 г глюкозы, проба с сахарной нагрузкой, построение сахарных кривых. На английском языке наименование данного лабораторного метода обозначается терминами glucose tolerance test (GTT), oral glucose tolerance test (ОGTT).

Что показывает и зачем нужен глюкозотолерантный тест?


Итак, глюкозотолерантный тест представляет собой определение уровня сахара (глюкозы) в крови натощак и через два часа после приема раствора 75 г глюкозы, растворенной в стакане воды. В некоторых случаях проводят расширенный глюкозотолерантный тест, при котором уровень сахара в крови определяют натощак, через 30, 60, 90 и 120 минут после употребления раствора 75 г глюкозы.

В норме уровень сахара в крови натощак должен колебаться в пределах 3,3 – 5,5 ммоль/л для крови из пальца, и 4,0 – 6,1 ммоль/л для крови из вены. Через час после того, как на голодный желудок человек выпивает 200 мл жидкости, в которой растворено 75 г глюкозы, уровень сахара в крови повышается до максимального уровня (8 – 10 ммоль/л). Затем, по мере переработки и усвоения поступившей глюкозы, уровень сахара в крови снижается, и через 2 часа после приема 75 г глюкозы приходит практически к норме, и составляет менее 7,8 ммоль/л для крови из пальца и вены.

Если же через два часа после приема 75 г глюкозы уровень сахара в крови оказывается выше 7,8 ммоль/л, но ниже 11,1 ммоль/л, то это свидетельствует о скрытом нарушении углеводного обмена. То есть о том, что углеводы в организме у человека усваиваются с нарушениями, слишком медленно, но пока эти расстройства компенсированы и протекают скрытно, без видимых клинических симптомов. По сути, ненормальное значение уровня сахара в крови через два часа после приема 75 г глюкозы означает, что у человека уже активно развивается сахарный диабет, но он еще не приобрел классическую развернутую форму со всеми характерными симптомами. Иными словами, человек уже болен, но стадия патологии ранняя, и потому никаких симптомов еще нет.

Таким образом, очевидно, что значение глюкозотолерантного теста огромно, так как этот простой анализ позволяет выявлять патологию углеводного обмена (сахарный диабет) на ранней стадии, когда еще нет характерных клинических симптомов, но зато можно провести лечение и предотвратить формирование классического диабета. И если скрытые нарушения углеводного обмена, которые выявляются при помощи глюкозотолерантного теста, можно скорректировать, обратить вспять и не допустить развития болезни, то на стадии диабета, когда патология уже полностью сформируется, вылечить заболевание уже невозможно, а можно только медикаментозно искусственно поддерживать нормальный уровень сахара в крови, оттягивая появление осложнений.

Следует помнить, что глюкозотолерантный тест позволяет на ранней стадии выявлять скрытые нарушения углеводного обмена, но не дает возможности различать первый и второй типы сахарного диабета, а также причины развития патологии.

Учитывая значение и диагностическую информативность глюкозотолерантного теста, данный анализ оправданно выполнять, когда имеются подозрения на наличие скрытого нарушения углеводного обмена. Признаками такого скрытого расстройства углеводного обмена являются следующие:
  • Уровень сахара в крови выше нормы, но ниже 6,1 ммоль/л для крови из пальца и 7,0 ммоль/л для крови из вены;
  • Периодическое появление глюкозы в моче на фоне нормального уровня сахара в крови;
  • Сильная жажда, частое и обильное мочеиспускание, а также усиленный аппетит на фоне нормального уровня сахара в крови;
  • Наличие глюкозы в моче на фоне беременности, тиреотоксикоза, заболеваний печени или хронических инфекционных заболеваний;
  • Нейропатия (нарушение работы нервов) или ретинопатия (нарушение работы сетчатки глаза) с неясными причинами.

Если у человека имеются признаки скрытых нарушений углеводного обмена, то ему рекомендуется сделать глюкозотолерантный тест, чтобы удостовериться в наличии или отсутствии ранней стадии патологии.

Абсолютно здоровым людям, у которых уровень сахара в крови в норме и отсутствуют признаки скрытого нарушения углеводного обмена, делать глюкозотолерантный тест не нужно, так как он совершенно бесполезен. Также не нужно делать глюкозотолерантный тест тем, у кого уровень сахара в крови натощак уже соответствует сахарному диабету (более 6,1 ммоль/л для крови из пальца и более 7,0 для крови из вены), так как у них нарушения вполне явные, а не скрытые.

Показания к выполнению глюкозотолерантного теста


Итак, глюкозотолерантный тест обязательно показан к выполнению в следующих случаях:
  • Сомнительные результаты определения уровня глюкозы натощак (ниже 7,0 ммоль/л, но выше 6,1 ммоль/л);
  • Случайно выявленное повышение уровня глюкозы в крови на фоне стресса;
  • Случайно выявленное наличие глюкозы в моче на фоне нормального уровня сахара в крови и отсутствия симптомов сахарного диабета (усиленная жажда и аппетит, частое и обильное мочеиспускание);
  • Наличие признаков сахарного диабета на фоне нормального уровня сахара в крови;
  • Беременность (для выявления гестационного сахарного диабета);
  • Наличие глюкозы в моче на фоне тиреотоксикоза, заболеваний печени, ретинопатии или нейропатии.
10
спасибо Спасибо
Оглавление
  1. Ультразвуковое исследование – общие понятия
  2. УЗИ суставов – общая характеристика
  3. Когда и как делают УЗИ суставов?
  4. Норма и патология суставов на УЗИ
  5. Особенности УЗИ различных суставов
  6. Где сделать УЗИ суставов? Цена исследования
  7. Ломота в теле, в ногах, руках, в суставах и мышцах: причины, что делать – видео
  8. Исследования при ревматоидном артрите: рентген, МРТ, УЗИ. Ревматический и ревматоидный артриты – видео
  9. Боль в плече: причины, что делать – видео
  10. Лечение боли в колене за 10 минут без таблеток и уколов – видео
  11. Оздоровительная йога для суставов и сердца. Йога и давление – видео
  12. Дифференциальная диагностика ревматоидного артрита с красной волчанкой, артритом, подагрой – видео
  13. Нужно ли делать операцию при артрозе коленного сустава – видео
  14. Укол гиалуроновой кислоты в коленный сустав при остеоартрозе – видео

Норма и патология суставов на УЗИ


Чтобы хорошо понимать протокол ультразвукового исследования, который выдается пациенту на руки, нужно владеть основной терминологией, которую мы приведем ниже.

Так, картина, которую врач видит на мониторе УЗ-аппарата, называется эхографической. Соответственно, все характеристики тканей, которые врач видит на УЗИ, называются также эхографическими. Например, имеются эхографические признаки воспаления, атрофии, новообразований и т.д.

Также следует знать, что сигнал от ткани, возникающий в ответ на проникновение в нее звуковых волн, называется эхогенностью. Эхогенность может быть однородной или неоднородной, если ткани, соответственно, имеют нормальное однородное строение или содержат мелкие патологические очаги, создающие неоднородность. Кроме того, если от ткани идет сигнал более сильный по сравнению с таковым от окружающих структур, то он называется гиперэхогенным. Соответственно, сигнал более слабый по сравнению с эхогенностью окружающих тканей, называется гипоэхогенным. В органах и тканях могут иметься гипоэхогенные или гиперэхогенные участки или включения, представляющие собой различные патологические очаги.

Далее рассмотрим, как должны на УЗИ суставов выглядеть нормальные ткани и патологические очаги в них.

Протокол нормального УЗИ суставов


В итоговом протоколе, который выдается после проведения УЗИ, имеется две основные части – описательная и заключение. В описательной части врач приводит описание всех увиденных им структур, указывает их состояние, иногда размеры, наличие или отсутствие в них патологических очагов и т.д. А в заключении врач дает вывод, в котором указывает, признаки какого заболевания были обнаружены по данным УЗИ.

В норме, когда патология сустава отсутствует, итоговое заключение должно быть написано в следующей форме: "Эхопризнаки патологических изменений сустава отсутствуют".

А в описательной части протокола УЗИ суставов в норме должны быть приведены следующие данные:

Синовиальная оболочка эхогенная, плохо отличимая от соединительной ткани, практически не видимая. Хрящ на суставных поверхностях костей анэхогенный или гипоэхогенный (узкая полоска), расположен параллельно поверхности кости. Кость эхогенна, дает акустическую тень. Суставные полости видны в качестве анэхогенных узких полосок между сочленяющимися костями. Сухожилия при сканировании под прямым углом анхогенны, а под другими углами гипоэхогенны. Мышцы на продольном срезе имеют гипоэхогенную перистую структуру, различимы наружная фасция, окутывающая мышечный пучок, и тело мышцы. На поперечном разрезе мышцы имеют пятнистую (ячеистую) гипоэхогенную структуру. Сухожилия и связки имеют вид переплетающихся гиперэхогенных удлиненных шнуров с нежными полосками различной длины и толщины.
10
спасибо Спасибо
Оглавление
  1. Физические основы и сущность рентгена стопы
  2. Рентгеноанатомия стопы
  3. Рентген стопы – общие сведения
  4. Когда делают рентген стопы?
  5. Как делают рентген стопы?
  6. Рентген стопы в норме (рентген-описание здоровой стопы)
  7. Рентген стопы при некоторых заболеваниях
  8. Где и за сколько можно сделать рентген стопы?
  9. Облучение при рентгене: риски, дозы, техника безопасности – видео
  10. Массаж ног ребенку: мастер-класс – видео
  11. Как получить освобождение от службы по плоскостопию: рентген стоп, к какому врачу обращаться и т.д. – видео
  12. Строение и функции стопы. Вальгусная деформация – видео
  13. Диагностика плоскостопия: осмотр врача, рентген в двух проекциях – видео
  14. Можно ли вылечить плоскостопие, и всегда ли его нужно лечить взрослым людям – видео
  15. Как выбрать обувь для здоровых стоп, при вальгусной и варусной деформации – видео

Когда делают рентген стопы?


Показания к рентгену стопы


Рентген стопы показан к выполнению, когда подозревается травматическое повреждение структур стопы, например, после неудачного падения, автомобильной аварии, занятий спортом и т.д. В таких случаях рентген позволяет выявлять трещины и переломы костей, вывихи в суставах стопы, разрывы и растяжения сухожилий и мышц, наличие посттравматических кист и т.д. Причем рентген стопы показан, даже если после предполагаемой травмы прошло довольно долгое время, и человека ничего не беспокоит, так как некоторые травматические повреждения могут заживать самостоятельно, но при этом оставлять осложнения (например, кисты костей, нестабильность суставов).

Кроме того, рентген стопы показан, если подозревается любое дистрофическое (артроз, остеопороз и проч.), обменное (подагра, рахит и т.д.), воспалительное (артрит, остеомиелит и т.д.) или опухолевое заболевание анатомических структур стопы (киста в кости, доброкачественные и злокачественные опухоли, метастазы). Различные заболевания структур стопы обычно сопровождаются болями, уменьшением объема движений стопой, возможно деформацией частей стопы, частыми переломами и т.д. А это значит, что при наличии таких симптомов показано выполнение рентгена стопы.

Отдельно следует сказать, что показанием для выполнения рентгена стопы является наличие у человека косолапости или плоскостопия. При косолапости рентген выполняется для уточнения расположения костей относительно друг друга, оценки степени косолапости и уточнения вида косолапости. Все эти данные необходимы для проведения коррекционного лечения. После лечения и реабилитации при косолапости вновь делают рентген стоп, чтобы увидеть, насколько удалось приблизить расположение костей стоп к норме.

При плоскостопии рентген выполняется в двух проекциях (задней и боковой) с нагрузкой, чтобы точно установить степень уплощения сводов стопы.
24
спасибо Спасибо
Осуществляются для оценки функций печени и дифференциальной диагностики ее патологий (воспалительных, инфильтративных, обменных, сердечнососудистых, гепатобилиарных).

Билирубин. Уровень билирубина характеризует поглотительную, обменную и выделительную функции печени. Связанную фракцию дифференцируют с несвязанной, используя результаты биохимических проб.
11
спасибо Спасибо
Бронхография – это метод рентгенологического обследования легких, позволяющий детально изучить строение дыхательных путей. Суть метода заключается в том, что в бронхиальное древо легкого пациента вводится специальное контрастное вещество (обычно на основе йода), которое хорошо видно на рентгене. Данное вещество заполняет дыхательные пути, в результате чего они становятся видны на рентгеновском снимке (чего в норме не наблюдается). Дело в том, что дыхательные пути (трахея, бронхи) не содержат костной ткани. Во время обычного рентгенологического исследования рентгеновские лучи относительно легко проходят через них, вследствие чего определить их строение на рентгенограмме (рентгеновском снимке) не представляется возможны. Если же перед рентгенографией ввести в легкие контраст, он сделает их «видимыми» на рентгене.

С помощью бронхографии можно оценить состояние трахеи, крупных и мелких бронхов, а также выявить патологические изменения в строении дыхательных путей и легочной ткани при различных заболеваниях.
10
спасибо Спасибо
Оглавление
  1. Магнитно-резонансная томография (МРТ) легких – общая характеристика
  2. МРТ легких с контрастом
  3. МРТ легких и бронхов – целесообразность исследования
  4. Противопоказания к МРТ легких
  5. Что такое МРТ – видео
  6. Вредно ли делать МРТ – видео
  7. Виды рентгенографии легких: цифровой рентген, флюорография, компьютерный томограф – видео
  8. Подготовка к МРТ легких
  9. Как делают МРТ легких?
  10. МРТ легких детям
  11. Снимки МРТ легких
  12. Стоимость и учреждения, где сделать магнитно-резонансную томографию (МРТ) легких
  13. Подготовка к МРТ – видео
  14. Кальцинаты в легких: определение, причины образования, выявление, лечение и последствия – видео
  15. Необычные признаки рака легких – видео

Магнитно-резонансная томография – это разновидность инструментальной диагностики различных заболеваний легких и бронхов, которая основана на способности протонов в атомах водорода под влиянием магнитного поля приходить в резонанс и вращаться в одну сторону. Ввиду того, что магнитно-резонансная томография позволяет с высочайшей точностью визуализировать мягкие ткани и кровоток, в настоящее время это исследование применяется для диагностики травм, аномалий строения, опухолей, метастазов, кист, воспалительных и дистрофических заболеваний легких и бронхов. Кроме того, томография используется для подготовки к операциям и для контроля за эффективностью проводимой терапии.

Магнитно-резонансная томография (МРТ) легких – общая характеристика


Что такое метод МРТ?


Метод магнитно-резонансной томографии, который может обозначаться аббревиатурами МРТ, ЯМР или ЯМРТ, является неинвазивным (не предполагающим проникновения медицинских инструментов в полости тела) способом исследования состояния различных органов и выявления в них разнообразных патологических процессов. Магнитно-резонансная томография относится к лучевым методам исследования, а это означает, что ее проведение основано на воздействии на тело человека безопасного спектра излучения (волн). Волны, прошедшие через ткани тела человека, фиксируются специальными датчиками, а затем компьютерная программа на основании того, насколько сильно уменьшилось или увеличилось излучение этих волн, выстраивает изображения исследуемых органов. Соответственно, в самом простом описании МРТ – это метод диагностики, основанный на получении изображений внутренних органов после прохождения через них магнитного излучения.

На заре своего появления в 80-е годы прошлого века магнитно-резонансная томография называлась ядерно-магнитно-резонансная томография (ЯМРТ) или ядерно-магнитный резонанс (ЯМР). Однако после произошедшей в апреле 1986 года трагедии на Чернобыльской атомной электростанции во всем мире в умах людей утвердилась прочная негативная ассоциация со словом "ядерный", которое воспринималось исключительно в качестве синонима проникающей радиации. Хотя в названии метода ЯМРТ слово "ядерный" относилось исключительно к ядрам атомов водорода, а не к ядерным реакциям, происходящим с выделением опасного радиационного излучения, тем не менее, ученым и практическим врачам пришлось немного модифицировать наименование метода обследования, убрав из него слово, вызывающее столь негативные ассоциации практически у всех без исключения пациентов. Именно таким образом описываемый метод диагностики получил современное название – магнитно-резонансная томография.

МРТ считается высокоточным диагностическим методом, поскольку она основана на регистрации излучения, исходящего от предварительно активированных атомов водорода, входящих в состав молекул воды, из которой тело человека состоит на 70 %. Соответственно, учитывая такое положение вещей, при использовании МРТ наиболее точные и информативные результаты можно получить относительно состояния тех тканей и органов, в которых много воды, таких, как почки, печень, головной и спинной мозг, мышцы, связки, сухожилия, кровеносные сосуды. А вот органы и ткани, содержащие мало воды (кости, легкие и др.), к сожалению, будут плохо отображаться на снимках МРТ. Однако на практике МРТ применяется для диагностики различных патологий в любых органах, так как имеющиеся в них патологические очаги могут содержать много воды и будут хорошо видны на снимках.

Физический принцип МРТ


Для того, чтобы хорошо себе представлять сущность МРТ, и на основании такого знания мочь самостоятельно принять решение о том, насколько нужно и информативно будет исследование в каждом конкретном случае, следует знать физический принцип этого метода.
ВНИМАНИЕ!

Информация, размещенная на нашем сайте, является справочной или популярной и предоставляется только медицинским специалистам для обсуждения. Назначение лекарственных средств должно проводиться только квалифицированным специалистом, на основании истории болезни и результатов диагностики.




По всем вопросам, связанным с функционированием сайта, Вы можете связаться по E-mail: Адрес электронной почты Редакции: [email protected] или по телефону: +7 (495) 665-82-00

Последние
вопросы
Какие микроорганизмы можно выявить, сделав посев грудного молока на стерильность?

Какие микроорганизмы можно обнаружить, сделав посев грудного молока на стерильность?

» Ответ
Какое количество молока необходимо для посева на стерильность?

Какое количество молока требуется для посева на стерильность?

» Ответ
Какие болезни могут быть выявлены с помощью посева грудного молока на стерильность?

Какие заболевания могут быть выявлены с помощью посева грудного молока на стерильность?

» Ответ
В каких условиях хранится посев грудного молока на стерильность?

Каковы условия хранения посева грудного молока на стерильность?

» Ответ
Как подготовится к посеву грудного молока на стерильность?

В чём заключается подготовка к посеву грудного молока на стерильность?

» Ответ
Что делать если в посеве грудного молока на стерильность обнаружили стафилококки?

Что делать, если в посеве грудного молока на стерильность обнаружили стафилококки?

» Ответ
Необходимо ли прервать грудное вскармливание, если в посеве грудного молока на стерильность были обнаружены микробы?

Нужно ли прервать кормление ребёнка грудью, если в посеве грудного молока на стерильность были обнаружены микробы?

» Ответ
В каких случаях наличие микробов в посеве грудного молока на стерильность может быть признаком болезни?

В каких случаях наличие микробов в посеве грудного молока на стерильность является признаком болезни?

» Ответ
Какое лечение необходимо, если в посеве грудного молока на стерильность были обнаружены бактерии?

Какое лечение необходимо пройти, если в посеве грудного молока на стерильность были обнаружены бактерии?

» Ответ
Какие факторы могут повлиять на результат посева грудного молока на стерильность?

Какие факторы могут повлиять на результат посева грудного молока на стерильность?

» Ответ
Все вопросы